Suppr超能文献

植物萜烯合酶产生的倍半萜多样性的分子基础。

Molecular Basis for Sesterterpene Diversity Produced by Plant Terpene Synthases.

机构信息

State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China.

National Key Laboratory of Plant Molecular Genetics, Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China.

出版信息

Plant Commun. 2020 Apr 29;1(5):100051. doi: 10.1016/j.xplc.2020.100051. eCollection 2020 Sep 14.

Abstract

Class I terpene synthase (TPS) generates bioactive terpenoids with diverse backbones. Sesterterpene synthase (sester-TPS, C25), a branch of class I TPSs, was recently identified in Brassicaceae. However, the catalytic mechanisms of sester-TPSs are not fully understood. Here, we first identified three nonclustered functional sester-TPSs (AtTPS06, AtTPS22, and AtTPS29) in . AtTPS06 utilizes a type-B cyclization mechanism, whereas most other sester-TPSs produce various sesterterpene backbones via a type-A cyclization mechanism. We then determined the crystal structure of the AtTPS18-FSPP complex to explore the cyclization mechanism of plant sester-TPSs. We used structural comparisons and site-directed mutagenesis to further elucidate the mechanism: (1) mainly due to the outward shift of helix G, plant sester-TPSs have a larger catalytic pocket than do mono-, sesqui-, and di-TPSs to accommodate GFPP; (2) type-A sester-TPSs have more aromatic residues (five or six) in their catalytic pocket than classic TPSs (two or three), which also determines whether the type-A or type-B cyclization mechanism is active; and (3) the other residues responsible for product fidelity are determined by interconversion of AtTPS18 and its close homologs. Altogether, this study improves our understanding of the catalytic mechanism of plant sester-TPS, which ultimately enables the rational engineering of sesterterpenoids for future applications.

摘要

I 类萜烯合酶(TPS)生成具有不同骨架的生物活性萜类化合物。最近在十字花科植物中鉴定出甾体萜烯合酶(sester-TPS,C25),它是 I 类 TPS 的一个分支。然而,sester-TPS 的催化机制尚未完全阐明。在这里,我们首次在 中鉴定出三个非聚类功能 sester-TPS(AtTPS06、AtTPS22 和 AtTPS29)。AtTPS06 利用 B 型环化机制,而大多数其他 sester-TPS 通过 A 型环化机制产生各种甾体萜烯骨架。然后,我们确定了 AtTPS18-FSPP 复合物的晶体结构,以探索植物 sester-TPS 的环化机制。我们使用结构比较和定点突变进一步阐明了该机制:(1)由于螺旋 G 的向外移动,植物 sester-TPS 具有比单萜、倍半萜和二萜更大的催化口袋,以容纳 GFPP;(2)A 型 sester-TPS 在其催化口袋中具有比经典 TPS 更多的芳香族残基(五个或六个),这也决定了 A 型或 B 型环化机制是否活跃;(3)负责产物保真度的其他残基由 AtTPS18 与其近缘同源物的相互转换决定。总的来说,这项研究提高了我们对植物 sester-TPS 催化机制的理解,这最终使我们能够合理地工程化甾体萜烯,以用于未来的应用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5461/7747971/fe1392c46fd4/gr1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验