Suppr超能文献

制作杯子和戒指:巨胞饮作用的“停滞波”模型。

Making cups and rings: the 'stalled-wave' model for macropinocytosis.

机构信息

MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, U.K.

Department of Computer Science, University of Warwick, Coventry CV4 7AL, U.K.

出版信息

Biochem Soc Trans. 2024 Aug 28;52(4):1785-1794. doi: 10.1042/BST20231426.

Abstract

Macropinocytosis is a broadly conserved endocytic process discovered nearly 100 years ago, yet still poorly understood. It is prominent in cancer cell feeding, immune surveillance, uptake of RNA vaccines and as an invasion route for pathogens. Macropinocytic cells extend large cups or flaps from their plasma membrane to engulf droplets of medium and trap them in micron-sized vesicles. Here they are digested and the products absorbed. A major problem - discussed here - is to understand how cups are shaped and closed. Recently, lattice light-sheet microscopy has given a detailed description of this process in Dictyostelium amoebae, leading to the 'stalled-wave' model for cup formation and closure. This is based on membrane domains of PIP3 and active Ras and Rac that occupy the inner face of macropinocytic cups and are readily visible with suitable reporters. These domains attract activators of dendritic actin polymerization to their periphery, creating a ring of protrusive F-actin around themselves, thus shaping the walls of the cup. As domains grow, they drive a wave of actin polymerization across the plasma membrane that expands the cup. When domains stall, continued actin polymerization under the membrane, combined with increasing membrane tension in the cup, drives closure at lip or base. Modelling supports the feasibility of this scheme. No specialist coat proteins or contractile activities are required to shape and close cups: rings of actin polymerization formed around PIP3 domains that expand and stall seem sufficient. This scheme may be widely applicable and begs many biochemical questions.

摘要

巨胞饮作用是一种广泛保守的内吞过程,早在近 100 年前就被发现,但仍知之甚少。它在癌细胞摄取、免疫监视、RNA 疫苗摄取以及病原体入侵途径中都很突出。巨胞饮细胞从其质膜延伸出大杯或瓣状结构,吞噬培养基液滴并将其困在微米大小的囊泡中。在这里,它们被消化,产物被吸收。一个主要的问题——在这里讨论——是理解杯子是如何形成和关闭的。最近,晶格光片显微镜对粘菌变形虫中的这个过程进行了详细描述,提出了杯形成和关闭的“停滞波”模型。该模型基于 PIP3 和活性 Ras 和 Rac 的膜域,这些膜域占据巨胞饮杯的内表面,用合适的报告器很容易观察到。这些域吸引树突状肌动蛋白聚合酶的激活剂到其周围,在自身周围形成一个突起的 F-肌动蛋白环,从而塑造杯壁。随着域的增长,它们驱动肌动蛋白聚合酶在质膜上的波状运动,使杯扩张。当域停滞时,膜下持续的肌动蛋白聚合,加上杯内不断增加的膜张力,导致杯的边缘或底部闭合。建模支持了这个方案的可行性。不需要专门的包被蛋白或收缩活动来塑造和关闭杯子:围绕 PIP3 域形成的肌动蛋白聚合酶环扩展和停滞似乎就足够了。这个方案可能具有广泛的适用性,并提出了许多生化问题。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f2f0/11668297/451c0a19f662/BST-52-1785-g0001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验