Department of Cardiology National Heart Centre Singapore Singapore Singapore.
Duke-NUS Medical School National University of Singapore Singapore Singapore.
J Am Heart Assoc. 2024 Jul 2;13(13):e033879. doi: 10.1161/JAHA.123.033879. Epub 2024 Jun 27.
Most pretest probability (PTP) tools for obstructive coronary artery disease (CAD) were Western -developed. The most appropriate PTP models and the contribution of coronary artery calcium score (CACS) in Asian populations remain unknown. In a mixed Asian cohort, we compare 5 PTP models: local assessment of the heart (LAH), CAD Consortium (CAD2), risk factor-weighted clinical likelihood, the American Heart Association/American College of Cardiology and the European Society of Cardiology PTP and 3 extended versions of these models that incorporated CACS: LAH, CAD2, and the CACS-clinical likelihood.
The study cohort included 771 patients referred for stable chest pain. Obstructive CAD prevalence was 27.5%. Calibration, area under the receiver-operating characteristic curves (AUC) and net reclassification index were evaluated. LAH clinical had the best calibration (χ 5.8; =0.12). For CACS models, LAH showed least deviation between observed and expected cases (χ 37.5; <0.001). There was no difference in AUCs between the LAH clinical (AUC, 0.73 [95% CI, 0.69-0.77]), CAD2 clinical (AUC, 0.72 [95% CI, 0.68-0.76]), risk factor-weighted clinical likelihood (AUC, 0.73 [95% CI: 0.69-0.76) and European Society of Cardiology PTP (AUC, 0.71 [95% CI, 0.67-0.75]). CACS improved discrimination and reclassification of the LAH (AUC, 0.88; net reclassification index, 0.46), CAD2 (AUC, 0.87; net reclassification index, 0.29) and CACS-CL (AUC, 0.87; net reclassification index, 0.25).
In a mixed Asian cohort, Asian-derived LAH models had similar discriminatory performance but better calibration and risk categorization for clinically relevant PTP cutoffs. Incorporating CACS improved discrimination and reclassification. These results support the use of population-matched, CACS-inclusive PTP tools for the prediction of obstructive CAD.
大多数用于阻塞性冠状动脉疾病(CAD)的术前概率(PTP)工具都是西方开发的。在亚洲人群中,最合适的 PTP 模型以及冠状动脉钙评分(CACS)的贡献仍然未知。在一个混合的亚洲队列中,我们比较了 5 种 PTP 模型:局部心脏评估(LAH)、CAD 联合会(CAD2)、风险因素加权临床可能性、美国心脏协会/美国心脏病学会和欧洲心脏病学会 PTP 以及这 3 种模型的 3 个扩展版本,这些模型纳入了 CACS:LAH、CAD2 和 CACS-临床可能性。
研究队列包括 771 名因稳定型胸痛就诊的患者。阻塞性 CAD 的患病率为 27.5%。评估了校准、受试者工作特征曲线下面积(AUC)和净重新分类指数。LAH 临床具有最佳的校准(χ 5.8;=0.12)。对于 CACS 模型,LAH 显示出观察到的和预期的病例之间的偏差最小(χ 37.5;<0.001)。LAH 临床(AUC,0.73 [95%CI,0.69-0.77])、CAD2 临床(AUC,0.72 [95%CI,0.68-0.76])、风险因素加权临床可能性(AUC,0.73 [95%CI:0.69-0.76])和欧洲心脏病学会 PTP(AUC,0.71 [95%CI,0.67-0.75])之间 AUC 无差异。CACS 提高了 LAH(AUC,0.88;净重新分类指数,0.46)、CAD2(AUC,0.87;净重新分类指数,0.29)和 CACS-CL(AUC,0.87;净重新分类指数,0.25)的鉴别和重新分类能力。
在一个混合的亚洲队列中,亚洲衍生的 LAH 模型具有相似的判别性能,但对于临床相关 PTP 切点具有更好的校准和风险分类。纳入 CACS 可提高鉴别力和重新分类。这些结果支持使用与人群匹配的、包含 CACS 的 PTP 工具来预测阻塞性 CAD。