Sorbonne Université, Centre National de la Recherche Scientifique, UMR 7144, Adaptation et Diversité en Milieu Marin, group Ecology of Marine Plankton, Station Biologique de Roscoff, Place Georges Teissier, Roscoff 29680, France.
Centre National de la Recherche Scientifique, UMR 6285 Laboratoire des Sciences et Techniques de l'information de la Communication et de la Connaissance (Lab-STICC), Technopole Brest-Iroise, Brest 29238, France.
Curr Biol. 2024 Jul 22;34(14):3064-3076.e5. doi: 10.1016/j.cub.2024.05.066. Epub 2024 Jun 26.
Dinophysis dinoflagellates are predators of Mesodinium ciliates, from which they retain only the plastids of cryptophyte origin. The absence of nuclear photosynthetic cryptophyte genes in Dinophysis raises intriguing physiological and evolutionary questions regarding the functional dynamics of these temporary kleptoplastids within a foreign cellular environment. In an experimental setup including two light conditions, the comparative analysis with Mesodinium rubrum and the cryptophyte Teleaulax amphioxeia revealed that Dinophysis acuminata possessed a smaller and less dynamic functional photosynthetic antenna for green light, a function performed by phycoerythrin. We showed that the lack of the cryptophyte nucleus prevented the synthesis of the phycoerythrin α subunit, thereby hindering the formation of a complete phycoerythrin in Dinophysis. In particular, biochemical analyses showed that Dinophysis acuminata synthesized a poorly stable, incomplete phycoerythrin composed of chromophorylated β subunits, with impaired performance. We show that, consequently, a continuous supply of new plastids is crucial for growth and effective photoacclimation in this organism. Transcriptome analyses revealed that all examined strains of Dinophysis spp. have acquired the cryptophyte pebA and pebB genes through horizontal gene transfer, suggesting a potential ability to synthesize the phycobilin pigments bound to the cryptophyte phycoerythrin. By emphasizing that a potential long-term acquisition of the cryptophyte plastid relies on establishing genetic independence for essential functions such as light harvesting, this study highlights the intricate molecular challenges inherent in the enslavement of organelles and the processes involved in the diversification of photosynthetic organisms through endosymbiosis.
甲藻中的沟鞭藻类是双鞭甲藻的捕食者,双鞭甲藻只保留了 cryptophyte 起源的质体。Dinophysis 中没有核光合 cryptophyte 基因,这引发了关于这些临时kleptoplastids 在异质细胞环境中的功能动态的有趣的生理和进化问题。在包括两种光照条件的实验设置中,与 Mesodinium rubrum 和 cryptophyte Teleaulax amphioxeia 的比较分析表明,Dinophysis acuminata 拥有较小且动态功能较弱的绿光光合天线,该功能由藻红蛋白执行。我们表明,cryptophyte 核的缺失阻止了藻红蛋白 α 亚基的合成,从而阻碍了 Dinophysis 中完整藻红蛋白的形成。特别是,生化分析表明,Dinophysis acuminata 合成了一种不稳定、不完整的藻红蛋白,由发色团化的β亚基组成,性能受损。我们表明,因此,新质体的持续供应对于该生物的生长和有效光适应至关重要。转录组分析表明,所有检查的 Dinophysis spp. 菌株都通过水平基因转移获得了 cryptophyte pebA 和 pebB 基因,这表明它们有可能合成与 cryptophyte 藻红蛋白结合的藻胆素色素。通过强调通过建立与关键功能(如光捕获)的遗传独立性来长期获得 cryptophyte 质体,这项研究强调了在细胞器的奴役和通过内共生进行光合生物多样化的过程中所涉及的复杂分子挑战。