Center for Neurodegenerative Diseases, Emory University, Atlanta, Georgia, USA; Department of Biochemistry, Emory University, Atlanta, Georgia, USA.
Department of Pharmacology, University of California - Davis, Davis, California, USA.
Mol Cell Proteomics. 2024 Aug;23(8):100809. doi: 10.1016/j.mcpro.2024.100809. Epub 2024 Jun 25.
Microglia are resident immune cells of the brain and regulate its inflammatory state. In neurodegenerative diseases, microglia transition from a homeostatic state to a state referred to as disease-associated microglia (DAM). DAM express higher levels of proinflammatory signaling molecules, like STAT1 and TLR2, and show transitions in mitochondrial activity toward a more glycolytic response. Inhibition of Kv1.3 decreases the proinflammatory signature of DAM, though how Kv1.3 influences the response is unknown. Our goal was to identify the potential proteins interacting with Kv1.3 during transition to DAM. We utilized TurboID, a biotin ligase, fused to Kv1.3 to evaluate potential interacting proteins with Kv1.3 via mass spectrometry in BV-2 microglia following TLR4-mediated activation. Electrophysiology, Western blotting, and flow cytometry were used to evaluate Kv1.3 channel presence and TurboID biotinylation activity. We hypothesized that Kv1.3 contains domain-specific interactors that vary during a TLR4-induced inflammatory response, some of which are dependent on the PDZ-binding domain on the C terminus. We determined that the N terminus of Kv1.3 is responsible for trafficking Kv1.3 to the cell surface and mitochondria (e.g., NUDC, TIMM50). Whereas, the C terminus interacts with immune signaling proteins in a lipopolysaccharide-induced inflammatory response (e.g., STAT1, TLR2, and C3). There are 70 proteins that rely on the C-terminal PDZ-binding domain to interact with Kv1.3 (e.g., ND3, Snx3, and Sun1). Furthermore, we used Kv1.3 blockade to verify functional coupling between Kv1.3 and interferon-mediated STAT1 activation. Overall, we highlight that the Kv1.3 potassium channel functions beyond conducting the outward flux of potassium ions in an inflammatory context and that Kv1.3 modulates the activity of key immune signaling proteins, such as STAT1 and C3.
小胶质细胞是大脑中常驻的免疫细胞,调节其炎症状态。在神经退行性疾病中,小胶质细胞从稳态状态转变为称为疾病相关小胶质细胞(DAM)的状态。DAM 表达更高水平的促炎信号分子,如 STAT1 和 TLR2,并表现出向更糖酵解反应的线粒体活性转变。Kv1.3 的抑制可降低 DAM 的促炎特征,但 Kv1.3 如何影响这种反应尚不清楚。我们的目标是确定在向 DAM 转变过程中与 Kv1.3 相互作用的潜在蛋白。我们利用 TurboID,一种与 Kv1.3 融合的生物素连接酶,通过 TLR4 介导的激活后在 BV-2 小胶质细胞中通过质谱法评估 Kv1.3 与潜在相互作用蛋白。电生理学、Western blot 和流式细胞术用于评估 Kv1.3 通道的存在和 TurboID 生物素化活性。我们假设 Kv1.3 包含在 TLR4 诱导的炎症反应中变化的特定结构域相互作用蛋白,其中一些依赖于 C 末端 PDZ 结合域。我们确定 Kv1.3 的 N 末端负责将 Kv1.3 转运到细胞膜和线粒体(例如,NUDC、TIMM50)。然而,C 末端在脂多糖诱导的炎症反应中与免疫信号蛋白相互作用(例如,STAT1、TLR2 和 C3)。有 70 种蛋白质依赖 C 末端 PDZ 结合域与 Kv1.3 相互作用(例如,ND3、Snx3 和 Sun1)。此外,我们使用 Kv1.3 阻断来验证 Kv1.3 与干扰素介导的 STAT1 激活之间的功能偶联。总的来说,我们强调 Kv1.3 钾通道在炎症环境中除了进行外向钾离子流之外还具有功能,并且 Kv1.3 调节关键免疫信号蛋白(如 STAT1 和 C3)的活性。