Suppr超能文献

具有超低应变的层状阴极赋予钠离子电池快速充电和缓慢放电能力。

Layered Cathode with Ultralow Strain Empowers Rapid-Charging and Slow-Discharging Capability in Sodium Ion Battery.

作者信息

Yang Maolin, Chen Ziwei, Huang Zhongyuan, Wang Rui, Ji Wenhai, Zhou Dong, Zeng Tao, Li Yongsheng, Wang Jun, Wang Liguang, Yang Tingting, Xiao Yinguo

机构信息

School of Advanced Materials, Peking University, Shenzhen Graduate School, Shenzhen, 518055, P. R. China.

Department of Engineering, University of Cambridge, Cambridge, CB30FS, UK.

出版信息

Adv Sci (Weinh). 2024 Sep;11(33):e2404701. doi: 10.1002/advs.202404701. Epub 2024 Jun 28.

Abstract

The development of the electric vehicle industry has spurred demand for secondary batteries capable of rapid-charging and slow-discharging. Among them, sodium-ion batteries (SIBs) with layered oxide as the cathode exhibit competitive advantages due to their comprehensive electrochemical performance. However, to meet the requirements of rapid-charging and slow-discharging scenarios, it is necessary to further enhance the rate performance of the cathode material to achieve symmetrical capacity at different rates. Simultaneously, minimizing lattice strain during asymmetric electrochemical processes is also significant in alleviating strain accumulation. In this study, the ordered distribution of transition metal layers and the diffusion pathway of sodium ions are optimized through targeted K-doping of sodium layers, leading to a reduction of the diffusion barrier and endowment of prominent rate performance. At a 20C rate, the capacity of the cathode can reach 94% of that at a 0.1C rate. Additionally, the rivet effect of the sodium layers resulted in a global volume strain of only 0.03% for the modified cathode during charging at a 10C rate and discharging at a 1C rate. In summary, high-performance SIBs, with promising prospects for rapid-charging and slow-discharging capability, are obtained through the regulation of sodium layers, opening up new avenues for commercial applications.

摘要

电动汽车行业的发展刺激了对能够快速充电和缓慢放电的二次电池的需求。其中,以层状氧化物为正极的钠离子电池(SIB)因其综合电化学性能而具有竞争优势。然而,为了满足快速充电和缓慢放电场景的要求,有必要进一步提高正极材料的倍率性能,以在不同倍率下实现对称容量。同时,在不对称电化学过程中最小化晶格应变对于减轻应变积累也很重要。在本研究中,通过对钠层进行有针对性的钾掺杂,优化了过渡金属层的有序分布和钠离子的扩散途径,从而降低了扩散势垒并赋予了突出的倍率性能。在20C倍率下,正极的容量可达到0.1C倍率下的94%。此外,钠层的铆钉效应使得改性正极在10C倍率充电和1C倍率放电过程中的整体体积应变仅为0.03%。综上所述,通过对钠层的调控获得了具有快速充电和缓慢放电能力且前景广阔的高性能钠离子电池,为商业应用开辟了新途径。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/468d/11434015/3650fc18d179/ADVS-11-2404701-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验