Department of Humanities and Social Sciences and Computation, California Institute of Technology, Pasadena, California, United States of America.
Neural Systems Program at the California, California Institute of Technology, Pasadena, California, United States of America.
PLoS Biol. 2024 Jun 28;22(6):e3002624. doi: 10.1371/journal.pbio.3002624. eCollection 2024 Jun.
Comparative research suggests that the hypothalamus is critical in switching between survival behaviors, yet it is unclear if this is the case in humans. Here, we investigate the role of the human hypothalamus in survival switching by introducing a paradigm where volunteers switch between hunting and escape in response to encounters with a virtual predator or prey. Given the small size and low tissue contrast of the hypothalamus, we used deep learning-based segmentation to identify the individual-specific hypothalamus and its subnuclei as well as an imaging sequence optimized for hypothalamic signal acquisition. Across 2 experiments, we employed computational models with identical structures to explain internal movement generation processes associated with hunting and escaping. Despite the shared structure, the models exhibited significantly different parameter values where escaping or hunting were accurately decodable just by computing the parameters of internal movement generation processes. In experiment 2, multi-voxel pattern analyses (MVPA) showed that the hypothalamus, hippocampus, and periaqueductal gray encode switching of survival behaviors while not encoding simple motor switching outside of the survival context. Furthermore, multi-voxel connectivity analyses revealed a network including the hypothalamus as encoding survival switching and how the hypothalamus is connected to other regions in this network. Finally, model-based fMRI analyses showed that a strong hypothalamic multi-voxel pattern of switching is predictive of optimal behavioral coordination after switching, especially when this signal was synchronized with the multi-voxel pattern of switching in the amygdala. Our study is the first to identify the role of the human hypothalamus in switching between survival behaviors and action organization after switching.
比较研究表明,下丘脑在生存行为之间的切换中起着关键作用,但在人类中是否如此还不清楚。在这里,我们通过引入一个范式来研究人类下丘脑在生存切换中的作用,即在与虚拟捕食者或猎物相遇时,志愿者根据情况在狩猎和逃避之间切换。鉴于下丘脑的体积小和组织对比度低,我们使用基于深度学习的分割方法来识别特定个体的下丘脑及其亚核,并优化了用于下丘脑信号采集的成像序列。在两项实验中,我们使用具有相同结构的计算模型来解释与狩猎和逃避相关的内部运动生成过程。尽管结构相同,但模型表现出显著不同的参数值,其中仅通过计算内部运动生成过程的参数,就可以准确解码逃避或狩猎。在实验 2 中,多体素模式分析 (MVPA) 显示,下丘脑、海马体和导水管周围灰质编码生存行为的切换,而不在生存环境之外编码简单的运动切换。此外,多体素连接分析显示了一个包括下丘脑的网络,用于编码生存切换以及下丘脑如何与网络中的其他区域连接。最后,基于模型的 fMRI 分析表明,强烈的下丘脑切换多体素模式可以预测切换后的最佳行为协调,尤其是当该信号与杏仁核中的切换多体素模式同步时。我们的研究首次确定了人类下丘脑在生存行为之间切换和切换后行为组织中的作用。