Suppr超能文献

基于 M/EEG 的时空间分辨多元模式分析。

Spatiotemporally resolved multivariate pattern analysis for M/EEG.

机构信息

Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford, UK.

Department of Psychiatry, University of Oxford, Oxford, UK.

出版信息

Hum Brain Mapp. 2022 Jul;43(10):3062-3085. doi: 10.1002/hbm.25835. Epub 2022 Mar 18.

Abstract

An emerging goal in neuroscience is tracking what information is represented in brain activity over time as a participant completes some task. While electroencephalography (EEG) and magnetoencephalography (MEG) offer millisecond temporal resolution of how activity patterns emerge and evolve, standard decoding methods present significant barriers to interpretability as they obscure the underlying spatial and temporal activity patterns. We instead propose the use of a generative encoding model framework that simultaneously infers the multivariate spatial patterns of activity and the variable timing at which these patterns emerge on individual trials. An encoding model inversion maps from these parameters to the equivalent decoding model, allowing predictions to be made about unseen test data in the same way as in standard decoding methodology. These SpatioTemporally Resolved MVPA (STRM) models can be flexibly applied to a wide variety of experimental paradigms, including classification and regression tasks. We show that these models provide insightful maps of the activity driving predictive accuracy metrics; demonstrate behaviourally meaningful variation in the timing of pattern emergence on individual trials; and achieve predictive accuracies that are either equivalent or surpass those achieved by more widely used methods. This provides a new avenue for investigating the brain's representational dynamics and could ultimately support more flexible experimental designs in the future.

摘要

神经科学的一个新兴目标是跟踪参与者在完成某项任务时大脑活动中随时间变化的信息表示。虽然脑电图 (EEG) 和脑磁图 (MEG) 提供了活动模式如何出现和演变的毫秒级时间分辨率,但标准解码方法在可解释性方面存在重大障碍,因为它们掩盖了潜在的空间和时间活动模式。相反,我们建议使用生成编码模型框架,该框架同时推断活动的多元空间模式以及这些模式在单个试验中出现的变量时间。编码模型反演从这些参数映射到等效的解码模型,允许以与标准解码方法相同的方式对未见测试数据进行预测。这些时空分辨多变量分析 (STRM) 模型可以灵活地应用于各种实验范式,包括分类和回归任务。我们表明,这些模型为驱动预测准确性度量的活动提供了有见地的映射;在单个试验中展示了模式出现时间的行为上有意义的变化;并实现了与更广泛使用的方法相当或超过的预测准确性。这为研究大脑的表示动态提供了新途径,并可能最终支持未来更灵活的实验设计。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4dbd/9188977/86c376508122/HBM-43-3062-g005.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验