文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

调节癌症机制病理学以恢复血管功能并增强免疫疗法。

Modulating cancer mechanopathology to restore vascular function and enhance immunotherapy.

作者信息

Mpekris Fotios, Panagi Myrofora, Charalambous Antonia, Voutouri Chrysovalantis, Stylianopoulos Triantafyllos

机构信息

Cancer Biophysics Laboratory, Department of Mechanical and Manufacturing Engineering, University of Cyprus, Nicosia, Cyprus.

Cancer Biophysics Laboratory, Department of Mechanical and Manufacturing Engineering, University of Cyprus, Nicosia, Cyprus.

出版信息

Cell Rep Med. 2024 Jul 16;5(7):101626. doi: 10.1016/j.xcrm.2024.101626. Epub 2024 Jun 28.


DOI:10.1016/j.xcrm.2024.101626
PMID:38944037
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11293360/
Abstract

Solid tumor pathology, characterized by abnormalities in the tumor microenvironment (TME), challenges therapeutic effectiveness. Mechanical factors, including increased tumor stiffness and accumulation of intratumoral forces, can determine the success of cancer treatments, defining the tumor's "mechanopathology" profile. These abnormalities cause extensive vascular compression, leading to hypoperfusion and hypoxia. Hypoperfusion hinders drug delivery, while hypoxia creates an unfavorable TME, promoting tumor progression through immunosuppression, heightened metastatic potential, drug resistance, and chaotic angiogenesis. Strategies targeting TME mechanopathology, such as vascular and stroma normalization, hold promise in enhancing cancer therapies with some already advancing to the clinic. Normalization can be achieved using anti-angiogenic agents, mechanotherapeutics, immune checkpoint inhibitors, engineered bacterial therapeutics, metronomic nanomedicine, and ultrasound sonopermeation. Here, we review the methods developed to rectify tumor mechanopathology, which have even led to cures in preclinical models, and discuss their bench-to-bedside translation, including the derivation of biomarkers from tumor mechanopathology for personalized therapy.

摘要

实体瘤病理学以肿瘤微环境(TME)异常为特征,对治疗效果构成挑战。机械因素,包括肿瘤硬度增加和肿瘤内压力积聚,可决定癌症治疗的成败,从而确定肿瘤的“机械病理学”特征。这些异常会导致广泛的血管受压,进而导致灌注不足和缺氧。灌注不足会阻碍药物递送,而缺氧会产生不利的肿瘤微环境,通过免疫抑制、增强转移潜能、耐药性和紊乱的血管生成促进肿瘤进展。针对肿瘤微环境机械病理学的策略,如血管和基质正常化,有望增强癌症治疗效果,其中一些策略已进入临床阶段。使用抗血管生成药物、机械疗法、免疫检查点抑制剂、工程细菌疗法、小剂量纳米药物和超声透入等方法可实现正常化。在此,我们回顾了为纠正肿瘤机械病理学而开发的方法,这些方法甚至在临床前模型中实现了治愈,并讨论了它们从 bench 到 bedside 的转化,包括从肿瘤机械病理学中衍生生物标志物用于个性化治疗。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f03b/11293360/6bc2d240ccb0/gr4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f03b/11293360/c7359ebf72aa/fx1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f03b/11293360/6f7c34d20591/gr1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f03b/11293360/d1cb28dd13d9/gr2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f03b/11293360/dfcfcce598f6/gr3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f03b/11293360/6bc2d240ccb0/gr4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f03b/11293360/c7359ebf72aa/fx1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f03b/11293360/6f7c34d20591/gr1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f03b/11293360/d1cb28dd13d9/gr2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f03b/11293360/dfcfcce598f6/gr3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f03b/11293360/6bc2d240ccb0/gr4.jpg

相似文献

[1]
Modulating cancer mechanopathology to restore vascular function and enhance immunotherapy.

Cell Rep Med. 2024-7-16

[2]
Combining microenvironment normalization strategies to improve cancer immunotherapy.

Proc Natl Acad Sci U S A. 2020-2-3

[3]
Anti-angiogenesis: Opening a new window for immunotherapy.

Life Sci. 2020-7-29

[4]
Tumor Vessel Normalization: A Window to Enhancing Cancer Immunotherapy.

Technol Cancer Res Treat. 2020

[5]
Nanotherapeutic approaches targeting angiogenesis and immune dysfunction in tumor microenvironment.

Sci China Life Sci. 2018-3-27

[6]
Augmenting Anticancer Immunity Through Combined Targeting of Angiogenic and PD-1/PD-L1 Pathways: Challenges and Opportunities.

Front Immunol. 2020-11-5

[7]
Anti-angiogenic nano-delivery system promotes tumor vascular normalizing and micro-environment reprogramming in solid tumor.

J Control Release. 2022-9

[8]
Cancer Immunotherapy with "Vascular-Immune" Crosstalk as Entry Point: Associated Mechanisms, Therapeutic Drugs and Nano-Delivery Systems.

Int J Nanomedicine. 2024

[9]
Manipulation of the crosstalk between tumor angiogenesis and immunosuppression in the tumor microenvironment: Insight into the combination therapy of anti-angiogenesis and immune checkpoint blockade.

Front Immunol. 2022

[10]
Enhancing cancer immunotherapy using antiangiogenics: opportunities and challenges.

Nat Rev Clin Oncol. 2018-3-6

引用本文的文献

[1]
Immune evasion in cancer: mechanisms and cutting-edge therapeutic approaches.

Signal Transduct Target Ther. 2025-7-31

[2]
Shear Stress and Microbubble-Mediated Modulation of Endothelial Cell Immunobiology.

Small Sci. 2025-1-27

[3]
Biomarkers of mRNA vaccine efficacy derived from mechanistic modeling of tumor-immune interactions.

PLoS Comput Biol. 2025-6-12

[4]
Sonopermeation combined with stroma normalization enables complete cure using nano-immunotherapy in murine breast tumors.

J Control Release. 2025-6-10

[5]
The mechanopathology of the tumor microenvironment: detection techniques, molecular mechanisms and therapeutic opportunities.

Front Cell Dev Biol. 2025-3-18

[6]
In-silico tool based on Boolean networks and meshless simulations for prediction of reaction and transport mechanisms in the systemic administration of chemotherapeutic drugs.

PLoS One. 2025-2-7

[7]
Cancer-associated fibroblasts, tumor and radiotherapy: interactions in the tumor micro-environment.

J Exp Clin Cancer Res. 2024-12-19

[8]
Forcing the code: tension modulates signaling to drive morphogenesis and malignancy.

Genes Dev. 2025-1-7

[9]
Mechanical forces inducing oxaliplatin resistance in pancreatic cancer can be targeted by autophagy inhibition.

Commun Biol. 2024-11-27

[10]
Recent Treatment Strategies and Molecular Pathways in Resistance Mechanisms of Antiangiogenic Therapies in Glioblastoma.

Cancers (Basel). 2024-8-27

本文引用的文献

[1]
Stabilizing Tumor-Resident Mast Cells Restores T-Cell Infiltration and Sensitizes Sarcomas to PD-L1 Inhibition.

Clin Cancer Res. 2024-6-3

[2]
Machine learning analysis reveals tumor stiffness and hypoperfusion as biomarkers predictive of cancer treatment efficacy.

Transl Oncol. 2024-6

[3]
A synergistic approach for modulating the tumor microenvironment to enhance nano-immunotherapy in sarcomas.

Neoplasia. 2024-5

[4]
Low-dose metronomic cisplatin as an antiangiogenic and anti-inflammatory strategy for cancer.

Br J Cancer. 2024-2

[5]
A randomized phase II study of metronomic cyclophosphamide and methotrexate (CM) with or without bevacizumab in patients with advanced breast cancer.

Breast Cancer Res Treat. 2024-2

[6]
Alleviating hypoxia to improve cancer immunotherapy.

Oncogene. 2023-12

[7]
Compression drives diverse transcriptomic and phenotypic adaptations in melanoma.

Proc Natl Acad Sci U S A. 2023-9-26

[8]
Beyond matrix stiffness: targeting force-induced cancer drug resistance.

Trends Cancer. 2023-11

[9]
Treatment of Liver Metastases With Focused Ultrasound and Microbubbles in Patients With Colorectal Cancer Receiving Chemotherapy.

Ultrasound Med Biol. 2023-9

[10]
Ultrasound stiffness and perfusion markers correlate with tumor volume responses to immunotherapy.

Acta Biomater. 2023-9-1

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索