Department of Food Science and Technology, University of Georgia.
J Oleo Sci. 2024;73(7):977-990. doi: 10.5650/jos.ess23212.
The objectives were to optimize the reaction conditions for C10:0 incorporation into grapeseed (GS) oil, characterize the structured lipid (SL) product, and study the changes in antioxidant activity of the SL. Taguchi method was used to optimize C10:0 incorporation by combining parameters in a total of 9 experiments. Lipozyme RM IM (Rhizomucor miehei immobilized lipase) and Lipozyme 435 (Candida antarctica recombinant immobilized lipase) were used as biocatalysts for the acidolysis reactions. C10:0 incorporation and triacylglycerol (TAG) species of the SL were analyzed to determine optimal conditions and enzyme type that gave higher incorporation. The optimal conditions were the same for both enzymes as follows: substrate molar ratio 1:3 (GS oil: C10:0), enzyme load 5% (w/w) of substrates, temperature 65℃, and time 12 h. HPLC analysis of SL gave MLM-type TAG species of 11.51±0.11 mol% and 12.68±0.34 mol% for Lipozyme RM IM and Lipozyme 435, respectively. GC analysis indicated that C10:0 incorporated at the sn-1,3 positions of the SL were 46.03±0.55 mol% and 47.28±1.22 mol%, respectively, for Lipozyme RM IM and Lipozyme 435. However, the total C10:0 incorporated into TAG species with Lipozyme RM IM was significantly higher (60.08±0.04 mol%) compared to 50.78±0.44 mol% for Lipozyme 435. Scaled-up (300 g) acidolysis reaction and characterization were done on SL synthesized using Lipozyme RM IM. SL reaction product was purified using short path distillation and fully characterized in terms of lipid classes, tocopherol, thermal behavior, and oxidative stability. The yield of purified scaled-up SL after short path distillation (SPD) was 72.96 wt%. The antioxidant in SL was reduced after SPD due to loss of tocopherols. This MLM-type-SL synthesized within 12 h using Lipozyme RM IM had a high content of C10:0 and may have functional and health benefits.
本研究旨在优化 C10:0 掺入葡萄籽油(GS)的反应条件,对结构脂质(SL)产品进行表征,并研究 SL 抗氧化活性的变化。采用田口法对 9 组实验的参数进行组合,优化 C10:0 的掺入。Lipozyme RM IM(米黑根毛霉固定化脂肪酶)和 Lipozyme 435(南极假丝酵母重组固定化脂肪酶)被用作酸解反应的生物催化剂。分析 SL 的 C10:0 掺入和三酰基甘油(TAG)种类,以确定能获得更高掺入率的最佳条件和酶类型。对于两种酶,最佳条件是相同的,即底物摩尔比 1:3(GS 油:C10:0)、酶用量为底物的 5%(w/w)、温度 65℃、时间 12 h。SL 的 HPLC 分析分别得到 Lipozyme RM IM 和 Lipozyme 435 的 MLM 型 TAG 种类为 11.51±0.11mol%和 12.68±0.34mol%。GC 分析表明,SL 中 C10:0 分别位于 sn-1,3 位,Lipozyme RM IM 和 Lipozyme 435 的含量分别为 46.03±0.55mol%和 47.28±1.22mol%。然而,与 Lipozyme 435 的 50.78±0.44mol%相比,Lipozyme RM IM 中总 C10:0 掺入 TAG 种类的含量显著更高(60.08±0.04mol%)。使用 Lipozyme RM IM 进行放大(300g)酸解反应和特性分析。使用短程蒸馏纯化 SL 反应产物,并从脂质种类、生育酚、热行为和氧化稳定性等方面对其进行全面表征。短程蒸馏(SPD)后纯化的放大规模 SL 的产率为 72.96wt%。由于生育酚的损失,SPD 后 SL 中的抗氧化剂减少。使用 Lipozyme RM IM 在 12 小时内合成的这种 MLM 型 SL 含有高含量的 C10:0,可能具有功能和健康益处。