Human Health Therapeutics Research Centre, National Research Council of Canada, Ottawa, Canada.
Department of Systems and Computer Engineering, Faculty of Engineering and Design, Carleton University, Ottawa, Canada.
Tissue Eng Part C Methods. 2024 Jul;30(7):289-306. doi: 10.1089/ten.TEC.2024.0083. Epub 2024 Jul 10.
In the advent of tissue engineering and regenerative medicine, the demand for innovative approaches to biofabricate complex vascular structures is increasing. We describe a single-step 3D bioprinting method leveraging Aspect Biosystems RX1 technology, which integrates the crosslinking step at a flow-focusing junction, to biofabricate immortalized adult rat brain endothelial cell (SV-ARBEC)-encapsulated alginate-collagen type I hydrogel rings. This single-step biofabrication process involves the strategic layer-by-layer assembly of hydrogel rings, encapsulating SV-ARBECs in a spatially controlled manner while optimizing access to media and nutrients. The spatial arrangement of the SV-ARBECs within the rings promotes spontaneous angiogenic network formation and the constrained deposition of cells within the hydrogel matrix facilitates tissue-like organized vascular-like network development. This approach provides a platform that can be adapted to many different endothelial cell types and leveraged to better understand the mechanisms driving angiogenesis and vascular-network formation in 3D bioprinted constructs supporting the development of more complex tissue and disease models for advancing drug discovery, tissue engineering, and regenerative medicine applications.
在组织工程和再生医学的发展中,对创新方法来生物制造复杂血管结构的需求日益增加。我们描述了一种利用 Aspect Biosystems RX1 技术的一步 3D 生物打印方法,该技术在流聚焦结处整合了交联步骤,以生物制造包封有永生化成年大鼠脑内皮细胞(SV-ARBEC)的藻酸盐-胶原蛋白 I 水凝胶环。这种一步生物制造过程涉及水凝胶环的战略层状组装,以空间控制的方式包封 SV-ARBEC,同时优化对介质和营养物质的获取。SV-ARBEC 在内环中的空间排列促进了自发的血管生成网络形成,而细胞在水凝胶基质中的约束沉积则有利于组织样有组织的血管样网络的发展。这种方法提供了一个可以适应许多不同内皮细胞类型的平台,并利用它来更好地理解在 3D 生物打印构建体中驱动血管生成和血管网络形成的机制,支持更复杂的组织和疾病模型的发展,用于推进药物发现、组织工程和再生医学应用。