Department of Orthopedics, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, PR China.
Department of Orthopedics, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, PR China; Department of Orthopedics, Linyi People's Hospital, Linyi 276000, PR China.
Mater Sci Eng C Mater Biol Appl. 2020 Jul;112:110905. doi: 10.1016/j.msec.2020.110905. Epub 2020 Mar 30.
Three-dimensional (3D) bioprinting is an extremely convenient biofabrication technique for creating biomimetic tissue-engineered bone constructs and has promising applications in regenerative medicine. However, existing bioinks have shown low mechanical strength, poor osteoinductive ability, and lacking a suitable microenvironment for laden cells. Nanosilicate (nSi) has shown to be a promising biomaterial, due to its unique properties such as excellent biocompatibility, degrade into nontoxic products, and with osteoinductive properties, which has been used in bone bioprinting. However, the long term bone healing effects and associating risks, if any, of using nSi in tissue engineering bone scaffolds in vivo are unclear and require a more thorough assessment prior to practical use. Hence, a functional and biomimetic nanocomposite bioink composed of rat bone marrow mesenchymal stem cells (rBMSCs), nSi, gelatin and alginate for the 3D bioprinting of tissue-engineered bone constructs is firstly demonstrated, mimicking the structure of extracellular matrix, to create a conducive microenvironment for encapsulated cells. It is shown that the addition of nSi significantly increases the printability and mechanical strength of fabricated human-scale tissue or organ structures (up to 15 mm height) and induces osteogenic differentiation of the encapsulated rBMSCs in the absence of in vitro osteoinductive factors. A systematic in vivo research of the biomimetic nanocomposite bioink scaffolds is further demonstrated in a rat critical-size (8 mm) bone defect-repair model. The in vivo results demonstrate that the 3D bioprinted nanocomposite scaffolds can significantly promote the bone healing of the rat calvarial defects compared to other scaffolds without nSi or cells, and show rarely side effects on the recipients. Given the above advantageous properties, the 3D bioprinted nanocomposite scaffolds can greatly accelerate the bone healing in critical bone defects, thus providing a clinical potential candidate for orthopedic applications.
三维(3D)生物打印是一种非常方便的生物制造技术,可用于创建仿生组织工程骨构建体,在再生医学中有广阔的应用前景。然而,现有的生物墨水表现出机械强度低、成骨诱导能力差以及缺乏适合负载细胞的微环境等问题。纳米硅酸盐(nSi)具有独特的性质,如优异的生物相容性、可降解为无毒产物和具有成骨诱导特性,因此被认为是一种很有前途的生物材料,已被用于骨生物打印。然而,nSi 在体内组织工程骨支架中的长期骨愈合效果及其相关风险尚不清楚,在实际应用之前需要更全面的评估。因此,本文首次展示了一种由大鼠骨髓间充质干细胞(rBMSCs)、nSi、明胶和海藻酸钠组成的功能性和仿生纳米复合生物墨水,用于组织工程骨构建体的 3D 生物打印,模拟细胞外基质的结构,为封装细胞创造有利的微环境。结果表明,nSi 的添加显著提高了所构建的人类尺度组织或器官结构(高达 15mm 高)的可打印性和机械强度,并在没有体外成骨诱导因子的情况下诱导了封装的 rBMSCs 的成骨分化。进一步在大鼠临界尺寸(8mm)骨缺损修复模型中对仿生纳米复合生物墨水支架进行了系统的体内研究。体内结果表明,与不含 nSi 或细胞的其他支架相比,3D 生物打印的纳米复合支架可显著促进大鼠颅骨缺损的骨愈合,且对接受者很少有副作用。鉴于上述优势,3D 生物打印的纳米复合支架可以极大地加速临界骨缺损的骨愈合,从而为骨科应用提供了一种有临床潜力的候选方案。
Mater Sci Eng C Mater Biol Appl. 2020-7
ACS Appl Mater Interfaces. 2020-4-8
Biofabrication. 2019-6-12
Acta Biomater. 2022-10-1
Tissue Eng Part A. 2021-9
Biofabrication. 2021-4-7
Polymers (Basel). 2025-2-8
Regen Biomater. 2024-7-4
Front Bioeng Biotechnol. 2024-3-27
Front Bioeng Biotechnol. 2024-3-13
Gels. 2023-12-21