文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

3D 生物打印功能化和仿生水凝胶支架,掺入纳米硅土,以促进大鼠颅骨缺损模型中的骨愈合。

3D-bioprinted functional and biomimetic hydrogel scaffolds incorporated with nanosilicates to promote bone healing in rat calvarial defect model.

机构信息

Department of Orthopedics, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, PR China.

Department of Orthopedics, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, PR China; Department of Orthopedics, Linyi People's Hospital, Linyi 276000, PR China.

出版信息

Mater Sci Eng C Mater Biol Appl. 2020 Jul;112:110905. doi: 10.1016/j.msec.2020.110905. Epub 2020 Mar 30.


DOI:10.1016/j.msec.2020.110905
PMID:32409059
Abstract

Three-dimensional (3D) bioprinting is an extremely convenient biofabrication technique for creating biomimetic tissue-engineered bone constructs and has promising applications in regenerative medicine. However, existing bioinks have shown low mechanical strength, poor osteoinductive ability, and lacking a suitable microenvironment for laden cells. Nanosilicate (nSi) has shown to be a promising biomaterial, due to its unique properties such as excellent biocompatibility, degrade into nontoxic products, and with osteoinductive properties, which has been used in bone bioprinting. However, the long term bone healing effects and associating risks, if any, of using nSi in tissue engineering bone scaffolds in vivo are unclear and require a more thorough assessment prior to practical use. Hence, a functional and biomimetic nanocomposite bioink composed of rat bone marrow mesenchymal stem cells (rBMSCs), nSi, gelatin and alginate for the 3D bioprinting of tissue-engineered bone constructs is firstly demonstrated, mimicking the structure of extracellular matrix, to create a conducive microenvironment for encapsulated cells. It is shown that the addition of nSi significantly increases the printability and mechanical strength of fabricated human-scale tissue or organ structures (up to 15 mm height) and induces osteogenic differentiation of the encapsulated rBMSCs in the absence of in vitro osteoinductive factors. A systematic in vivo research of the biomimetic nanocomposite bioink scaffolds is further demonstrated in a rat critical-size (8 mm) bone defect-repair model. The in vivo results demonstrate that the 3D bioprinted nanocomposite scaffolds can significantly promote the bone healing of the rat calvarial defects compared to other scaffolds without nSi or cells, and show rarely side effects on the recipients. Given the above advantageous properties, the 3D bioprinted nanocomposite scaffolds can greatly accelerate the bone healing in critical bone defects, thus providing a clinical potential candidate for orthopedic applications.

摘要

三维(3D)生物打印是一种非常方便的生物制造技术,可用于创建仿生组织工程骨构建体,在再生医学中有广阔的应用前景。然而,现有的生物墨水表现出机械强度低、成骨诱导能力差以及缺乏适合负载细胞的微环境等问题。纳米硅酸盐(nSi)具有独特的性质,如优异的生物相容性、可降解为无毒产物和具有成骨诱导特性,因此被认为是一种很有前途的生物材料,已被用于骨生物打印。然而,nSi 在体内组织工程骨支架中的长期骨愈合效果及其相关风险尚不清楚,在实际应用之前需要更全面的评估。因此,本文首次展示了一种由大鼠骨髓间充质干细胞(rBMSCs)、nSi、明胶和海藻酸钠组成的功能性和仿生纳米复合生物墨水,用于组织工程骨构建体的 3D 生物打印,模拟细胞外基质的结构,为封装细胞创造有利的微环境。结果表明,nSi 的添加显著提高了所构建的人类尺度组织或器官结构(高达 15mm 高)的可打印性和机械强度,并在没有体外成骨诱导因子的情况下诱导了封装的 rBMSCs 的成骨分化。进一步在大鼠临界尺寸(8mm)骨缺损修复模型中对仿生纳米复合生物墨水支架进行了系统的体内研究。体内结果表明,与不含 nSi 或细胞的其他支架相比,3D 生物打印的纳米复合支架可显著促进大鼠颅骨缺损的骨愈合,且对接受者很少有副作用。鉴于上述优势,3D 生物打印的纳米复合支架可以极大地加速临界骨缺损的骨愈合,从而为骨科应用提供了一种有临床潜力的候选方案。

相似文献

[1]
3D-bioprinted functional and biomimetic hydrogel scaffolds incorporated with nanosilicates to promote bone healing in rat calvarial defect model.

Mater Sci Eng C Mater Biol Appl. 2020-7

[2]
Composite bioink incorporating cell-laden liver decellularized extracellular matrix for bioprinting of scaffolds for bone tissue engineering.

Biomater Adv. 2024-12

[3]
Nanoengineered Osteoinductive Bioink for 3D Bioprinting Bone Tissue.

ACS Appl Mater Interfaces. 2020-4-8

[4]
Hybrid biofabrication of 3D osteoconductive constructs comprising Mg-based nanocomposites and cell-laden bioinks for bone repair.

Bone. 2022-1

[5]
3D bioprinting of graphene oxide-incorporated cell-laden bone mimicking scaffolds for promoting scaffold fidelity, osteogenic differentiation and mineralization.

Acta Biomater. 2021-2

[6]
Osteogenic and angiogenic tissue formation in high fidelity nanocomposite Laponite-gelatin bioinks.

Biofabrication. 2019-6-12

[7]
Graphene oxide/alginate composites as novel bioinks for three-dimensional mesenchymal stem cell printing and bone regeneration applications.

Nanoscale. 2019-11-29

[8]
Nanocomposite bioinks for 3D bioprinting.

Acta Biomater. 2022-10-1

[9]
Alginate-Based Bioinks for 3D Bioprinting and Fabrication of Anatomically Accurate Bone Grafts.

Tissue Eng Part A. 2021-9

[10]
GelMA/bioactive silica nanocomposite bioinks for stem cell osteogenic differentiation.

Biofabrication. 2021-4-7

引用本文的文献

[1]
Polymers for Osmotic Self-Inflating Expanders in Oral Surgical Procedures: A Comprehensive Review.

Polymers (Basel). 2025-2-8

[2]
Innovative Ink-Based 3D Hydrogel Bioprinted Formulations for Tissue Engineering Applications.

Gels. 2024-12-17

[3]
Physicochemical and Biological Characterization of Gelatin/Alginate Scaffolds Reinforced with -TCP, FDBA, and SrHA: Insights into Stem Cell Behavior and Osteogenic Differentiation.

Int J Biomater. 2024-8-19

[4]
A Futuristic Development in 3D Printing Technique Using Nanomaterials with a Step Toward 4D Printing.

ACS Omega. 2024-8-26

[5]
Nanoclay-Composite Hydrogels for Bone Tissue Engineering.

Gels. 2024-8-3

[6]
Nano-laponite encapsulated coaxial fiber scaffold promotes endochondral osteogenesis.

Regen Biomater. 2024-7-4

[7]
Nanofiber-induced hierarchically-porous magnesium phosphate bone cements accelerate bone regeneration by inhibiting Notch signaling.

Bioact Mater. 2024-4-25

[8]
Periodic static compression of micro-strain pattern regulates endochondral bone formation.

Front Bioeng Biotechnol. 2024-3-27

[9]
Bioprinting of gelatin-based materials for orthopedic application.

Front Bioeng Biotechnol. 2024-3-13

[10]
Current Biomedical Applications of 3D-Printed Hydrogels.

Gels. 2023-12-21

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索