Suppr超能文献

利用智能手机和机器学习生物合成用于检测铁离子的金纳米颗粒传感器

Biogenic fabrication of a gold nanoparticle sensor for detection of Fe ions using a smartphone and machine learning.

作者信息

Dang Kim-Phuong T, Nguyen T Thanh-Giang, Cao Tien-Dung, Le Van-Dung, Dang Chi-Hien, Duy Nguyen Phuc Hoang, Phuong Pham Thi Thuy, Huy Do Manh, Kim Chi Tran Thi, Nguyen Thanh-Danh

机构信息

Institute of Chemical Technology, Vietnam Academy of Science and Technology Ho Chi Minh City Vietnam

School of Information Technology, Tan Tao University Long An Vietnam

出版信息

RSC Adv. 2024 Jun 27;14(29):20466-20478. doi: 10.1039/d4ra03265a.

Abstract

In recent years, smartphones have been integrated into rapid colorimetric sensors for heavy metal ions, but challenges persist in accuracy and efficiency. Our study introduces a novel approach to utilize biogenic gold nanoparticle (AuNP) sensors in conjunction with designing a lightbox with a color reference and machine learning for detection of Fe ions in water. AuNPs were synthesized using the aqueous extract of leaf as reductants and stabilizing agents. Physicochemical analyses revealed diverse AuNP shapes and sizes with an average size of 19.8 nm, with a crystalline structure confirmed SAED and XRD techniques. AuNPs exhibited high sensitivity and selectivity in detection of Fe ions through UV-vis spectroscopy and smartphones, relying on nanoparticle aggregation. To enhance image quality, we developed a lightbox and implemented a reference color value for standardization, significantly improving performance of machine learning algorithms. Our method achieved approximately 6.7% higher evaluation metrics ( = 0.8780) compared to non-normalized approaches ( = 0.8207). This work presented a promising tool for quantitative Fe ion analysis in water.

摘要

近年来,智能手机已被集成到用于检测重金属离子的快速比色传感器中,但在准确性和效率方面仍存在挑战。我们的研究引入了一种新方法,将生物源金纳米颗粒(AuNP)传感器与设计带有颜色参考的灯箱以及用于检测水中铁离子的机器学习相结合。使用树叶的水提取物作为还原剂和稳定剂合成了AuNP。物理化学分析揭示了不同形状和尺寸的AuNP,平均尺寸为19.8 nm,通过选区电子衍射(SAED)和X射线衍射(XRD)技术确认了其晶体结构。AuNP通过紫外可见光谱和智能手机,依靠纳米颗粒聚集,在检测铁离子方面表现出高灵敏度和选择性。为了提高图像质量,我们开发了一个灯箱并实施了参考颜色值进行标准化,显著提高了机器学习算法的性能。与未归一化方法(F1 = 0.8207)相比,我们的方法实现的评估指标(F1 = 0.8780)高出约6.7%。这项工作为水中铁离子的定量分析提供了一个有前景的工具。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/96a8/11208897/255818978157/d4ra03265a-f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验