Suppr超能文献

利用两种非光刻沉积技术开发富含纳米间隙的混合金纳米结构,用于灵敏且可靠的表面增强拉曼散射生物传感器。

Development of nanogap-rich hybrid gold nanostructures by use of two non-lithographic deposition techniques for a sensitive and reliable SERS biosensor.

作者信息

Kwon Hyuck Ju, Cho Yong Jun, Yuk Kyeong Min, Lee Jonghwan, Choi Seung Ho, Byun Kyung Min

机构信息

Department of Electronics and Information Convergence Engineering, Kyung Hee University, Yongin, 17104 Republic of Korea.

School of Engineering, Brown University, Providence, RI 02912 USA.

出版信息

Biomed Eng Lett. 2024 May 29;14(4):859-866. doi: 10.1007/s13534-024-00381-4. eCollection 2024 Jul.

Abstract

UNLABELLED

Practical application of surface-enhanced Raman spectroscopy (SERS) has suffered from several limitations by heterogeneous distribution of hot-spots, such as high signal fluctuation and the resulting low reliability in detection. Herein, we develop a strategy of more sensitive and reliable SERS platform through designing spatially homogeneous gold nanoparticles (GNPs) on a uniform gold nanoisland (GNI) pattern. The proposed SERS substrate is successfully fabricated by combining two non-lithographic techniques of electron beam evaporation and convective self-assembly. These bottom-up methods allow a simple, cost-effective, and large-area fabrication. Compared to the SERS substrates obtained from two separate nanofabrication methods, Raman spectra measured by the samples with both GNPs and GNIs present a significant increase in the signal intensity as well as a notable improvement in signal fluctuation. The simulated near-field analyses demonstrate the formation of highly amplified plasmon modes within and at the gaps of the GNP-GNI interfaces. Moreover, the suggested SERS sensor is evaluated to detect the glucose concentration, exhibiting that the detection sensitivity is improved by more than 10 times compared to the sample with only GNI patterns and a fairly good spatial reproducibility of 7% is accomplished. It is believed that our suggestion could provide a potential for highly sensitive, low-cost, and reliable SERS biosensing platforms that include many advantages for healthcare devices.

SUPPLEMENTARY INFORMATION

The online version contains supplementary material available at 10.1007/s13534-024-00381-4.

摘要

未标注

表面增强拉曼光谱(SERS)的实际应用受到热点异质分布的若干限制,如高信号波动以及由此导致的检测可靠性低。在此,我们通过在均匀的金纳米岛(GNI)图案上设计空间均匀的金纳米颗粒(GNP),开发了一种更灵敏、可靠的SERS平台策略。所提出的SERS基底通过结合电子束蒸发和对流自组装这两种非光刻技术成功制备。这些自下而上的方法允许进行简单、经济高效且大面积的制造。与通过两种单独的纳米制造方法获得的SERS基底相比,同时存在GNP和GNI的样品所测量的拉曼光谱在信号强度上有显著增加,并且在信号波动方面有明显改善。模拟的近场分析表明在GNP - GNI界面内部和间隙处形成了高度放大的等离子体模式。此外,所建议的SERS传感器被评估用于检测葡萄糖浓度,结果表明与仅具有GNI图案的样品相比,检测灵敏度提高了10倍以上,并且实现了相当好的7%的空间再现性。相信我们的建议可为高灵敏度、低成本且可靠的SERS生物传感平台提供潜力,这些平台对医疗设备具有诸多优势。

补充信息

在线版本包含可在10.1007/s13534 - 024 - 00381 - 4获取的补充材料。

相似文献

2
Biological SERS-active sensor platform based on flexible silk fibroin film and gold nanoislands.
Opt Express. 2022 Feb 28;30(5):7782-7792. doi: 10.1364/OE.452665.
4
Highly Sensitive, Uniform, and Reproducible Surface-Enhanced Raman Spectroscopy Substrate with Nanometer-Scale Quasi-periodic Nanostructures.
ACS Appl Mater Interfaces. 2017 Sep 20;9(37):32369-32376. doi: 10.1021/acsami.7b08807. Epub 2017 Sep 5.
6
Gold-capped silicon for ultrasensitive SERS-biosensing: Towards human biofluids analysis.
Mater Sci Eng C Mater Biol Appl. 2018 Mar 1;84:208-217. doi: 10.1016/j.msec.2017.11.029. Epub 2017 Dec 5.
8

本文引用的文献

1
Dimensional Design for Surface-Enhanced Raman Spectroscopy.
ACS Mater Au. 2022 May 10;2(5):552-575. doi: 10.1021/acsmaterialsau.2c00005. eCollection 2022 Sep 14.
2
Quantitative Surface-Enhanced Spectroscopy.
Annu Rev Phys Chem. 2022 Apr 20;73:141-162. doi: 10.1146/annurev-physchem-082720-033751. Epub 2021 Dec 22.
3
Quantitative Surface-Enhanced Raman Spectroscopy for Field Detections Based on Structurally Homogeneous Silver-Coated Silicon Nanocone Arrays.
ACS Omega. 2021 Jul 12;6(29):18928-18938. doi: 10.1021/acsomega.1c02179. eCollection 2021 Jul 27.
6
Predictions on the SERS enhancement factor of gold nanosphere aggregate samples.
Phys Chem Chem Phys. 2019 Jul 17;21(28):15515-15522. doi: 10.1039/c9cp02015b.
7
Glucose Sensing Using Surface-Enhanced Raman-Mode Constraining.
Anal Chem. 2018 Dec 18;90(24):14269-14278. doi: 10.1021/acs.analchem.8b03420. Epub 2018 Nov 27.
8
SERS detection of 4-Aminobenzenethiol based on triangular Au-AuAg hierarchical-multishell nanostructure.
Spectrochim Acta A Mol Biomol Spectrosc. 2018 Nov 5;204:754-762. doi: 10.1016/j.saa.2018.06.105. Epub 2018 Jun 30.
10
Plasmonic Nanogap-Enhanced Raman Scattering with Nanoparticles.
Acc Chem Res. 2016 Dec 20;49(12):2746-2755. doi: 10.1021/acs.accounts.6b00409. Epub 2016 Nov 8.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验