Suppr超能文献

经食管超声心动图视图分类的深度学习。

Deep learning for transesophageal echocardiography view classification.

机构信息

Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University, 300 Pasteur Drive, Stanford, CA, 94305, USA.

Department of Cardiology, Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, USA.

出版信息

Sci Rep. 2024 Jan 2;14(1):11. doi: 10.1038/s41598-023-50735-8.

Abstract

Transesophageal echocardiography (TEE) imaging is a vital tool used in the evaluation of complex cardiac pathology and the management of cardiac surgery patients. A key limitation to the application of deep learning strategies to intraoperative and intraprocedural TEE data is the complexity and unstructured nature of these images. In the present study, we developed a deep learning-based, multi-category TEE view classification model that can be used to add structure to intraoperative and intraprocedural TEE imaging data. More specifically, we trained a convolutional neural network (CNN) to predict standardized TEE views using labeled intraoperative and intraprocedural TEE videos from Cedars-Sinai Medical Center (CSMC). We externally validated our model on intraoperative TEE videos from Stanford University Medical Center (SUMC). Accuracy of our model was high across all labeled views. The highest performance was achieved for the Trans-Gastric Left Ventricular Short Axis View (area under the receiver operating curve [AUC] = 0.971 at CSMC, 0.957 at SUMC), the Mid-Esophageal Long Axis View (AUC = 0.954 at CSMC, 0.905 at SUMC), the Mid-Esophageal Aortic Valve Short Axis View (AUC = 0.946 at CSMC, 0.898 at SUMC), and the Mid-Esophageal 4-Chamber View (AUC = 0.939 at CSMC, 0.902 at SUMC). Ultimately, we demonstrate that our deep learning model can accurately classify standardized TEE views, which will facilitate further downstream deep learning analyses for intraoperative and intraprocedural TEE imaging.

摘要

经食管超声心动图(TEE)成像在评估复杂心脏病理学和心脏手术患者管理中是一种重要的工具。将深度学习策略应用于术中及术中 TEE 数据的一个关键限制是这些图像的复杂性和非结构化性质。在本研究中,我们开发了一种基于深度学习的多类别 TEE 视图分类模型,可用于对术中及术中 TEE 成像数据添加结构。更具体地说,我们使用 Cedars-Sinai 医疗中心(CSMC)的带标签的术中及术中 TEE 视频训练了一个卷积神经网络(CNN),以预测标准化的 TEE 视图。我们在斯坦福大学医学中心(SUMC)的术中 TEE 视频上对外验证了我们的模型。我们的模型在所有标记视图中的准确性都很高。表现最好的是经胃左室短轴视图(CSMC 的接收者操作特征曲线下面积[AUC]为 0.971,SUMC 为 0.957)、中段食管长轴视图(CSMC 的 AUC 为 0.954,SUMC 为 0.905)、中段食管主动脉瓣短轴视图(CSMC 的 AUC 为 0.946,SUMC 为 0.898)和中段食管四腔心视图(CSMC 的 AUC 为 0.939,SUMC 为 0.902)。最终,我们证明我们的深度学习模型可以准确地对标准化的 TEE 视图进行分类,这将有助于进一步对术中及术中 TEE 成像进行深度学习分析。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/65bc/10761863/d547afccea5d/41598_2023_50735_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验