Seetharaman Shailaja, Devany John, Kim Ha Ram, van Bodegraven Emma, Chmiel Theresa, Tzu-Pin Shentu, Chou Wen-Hung, Fang Yun, Gardel Margaret Lise
Department of Physics, The University of Chicago, Chicago, IL 60637, USA.
James Franck Institute, The University of Chicago, Chicago, IL 60637, USA.
bioRxiv. 2024 Jun 17:2024.06.16.599227. doi: 10.1101/2024.06.16.599227.
Endothelial tissues are essential mechanosensors in the vasculature and facilitate adaptation to various blood flow-induced mechanical cues. Defects in endothelial mechanoresponses can perturb tissue remodelling and functions leading to cardiovascular disease progression. In this context, the precise mechanisms of endothelial mechanoresponses contributing to normal and diseased tissue functioning remain elusive. Here, we sought to uncover how flow-mediated transcriptional regulation drives endothelial mechanoresponses in healthy and atherosclerotic-prone tissues. Using bulk RNA sequencing, we identify novel mechanosensitive genes in response to healthy unidirectional flow (UF) and athero-prone disturbed flow (DF). We find that the transcription as well as protein expression of Four-and-a-half LIM protein 2 (FHL2) are enriched in athero-prone DF both and . We then demonstrate that the exogenous expression of FHL2 is necessary and sufficient to drive discontinuous adherens junction morphology and increased tissue permeability. This athero-prone phenotype requires the force-sensitive binding of FHL2 to actin. In turn, the force-dependent localisation of FHL2 to stress fibres promotes microtubule dynamics to release the RhoGEF, GEF-H1, and activate the Rho-ROCK pathway. Thus, we unravelled a novel mechanochemical feedback wherein force-dependent FHL2 localisation promotes hypercontractility. This misregulated mechanoresponse creates highly permeable tissues, depicting classic hallmarks of atherosclerosis progression. Overall, we highlight crucial functions for the FHL2 force-sensitivity in tuning multi-scale endothelial mechanoresponses.
内皮组织是脉管系统中重要的机械传感器,有助于适应各种血流诱导的机械信号。内皮机械反应的缺陷会扰乱组织重塑和功能,导致心血管疾病进展。在此背景下,内皮机械反应促进正常和患病组织功能的精确机制仍不清楚。在这里,我们试图揭示血流介导的转录调控如何在健康和易患动脉粥样硬化的组织中驱动内皮机械反应。使用批量RNA测序,我们鉴定出了响应健康单向血流(UF)和易患动脉粥样硬化的紊乱血流(DF)的新型机械敏感基因。我们发现四半LIM蛋白2(FHL2)的转录和蛋白表达在易患动脉粥样硬化的DF中均有富集。然后我们证明FHL2的外源性表达对于驱动不连续黏附连接形态和增加组织通透性是必要且充分的。这种易患动脉粥样硬化的表型需要FHL2与肌动蛋白的力敏结合。反过来,FHL2在应力纤维上的力依赖性定位促进微管动力学,以释放Rho鸟嘌呤核苷酸交换因子(RhoGEF)、GEF-H1,并激活Rho-ROCK途径。因此,我们揭示了一种新的机械化学反馈,其中力依赖性FHL2定位促进过度收缩。这种失调的机械反应产生了高度通透的组织,描绘了动脉粥样硬化进展的典型特征。总体而言,我们强调了FHL2力敏感性在调节多尺度内皮机械反应中的关键作用。