Leça Nelson, Barbosa Francisca, Rodriguez-Calado Sergi, Moura Margarida, Pedroso Paulo D, Pinto Inês, Verza Arianna E, Bange Tanja, Sunkel Claudio E, Barisic Marin, Maresca Thomas J, Conde Carlos
bioRxiv. 2024 Jun 13:2024.06.11.598300. doi: 10.1101/2024.06.11.598300.
Faithfull cell division relies on mitotic chromosomes becoming bioriented with each pair of sister kinetochores bound to microtubules oriented toward opposing spindle poles. Erroneous kinetochore-microtubule attachments often form during early mitosis, but are destabilized through the phosphorylation of outer kinetochore proteins by centromeric AURORA B kinase (ABK) and centrosomal AURORA A kinase (AAK), thus allowing for re-establishment of attachments until biorientation is achieved. MPS1-mediated phosphorylation of NDC80 has also been shown to directly weaken the kinetochore-microtubule interface in yeast. In human cells, MPS1 has been proposed to transiently accumulate at end-on attached kinetochores and phosphorylate SKA3 to promote microtubule release. Whether MPS1 directly targets NDC80 and/or promotes the activity of AURORA kinases in metazoans remains unclear. Here, we report a novel mechanism involving communication between kinetochores and centrosomes, wherein MPS1 acts upstream of AAK to promote error correction. MPS1 on pole-proximal kinetochores phosphorylates the C-lobe of AAK thereby increasing its activation at centrosomes. This proximity-based activation ensures the establishment of a robust AAK activity gradient that locally destabilizes mal-oriented kinetochores near spindle poles. Accordingly, MPS1 depletion from cells causes severe chromosome misalignment and erroneous kinetochore-microtubule attachments, which can be rescued by tethering either MPS1 or constitutively active AAK mutants to centrosomes. Proximity-based activation of AAK by MPS1 also occurs in human cells to promote AAK-mediated phosphorylation of the NDC80 N-terminal tail. These findings uncover an MPS1-AAK cross-talk that is required for efficient error correction, showcasing the ability of kinetochores to modulate centrosome outputs to ensure proper chromosome segregation.
忠实的细胞分裂依赖于有丝分裂染色体实现双定向,即每对姐妹动粒与朝向相反纺锤体极的微管结合。错误的动粒-微管附着在有丝分裂早期经常形成,但通过着丝粒AURORA B激酶(ABK)和中心体AURORA A激酶(AAK)对外侧动粒蛋白的磷酸化作用而变得不稳定,从而允许重新建立附着,直到实现双定向。在酵母中,MPS1介导的NDC80磷酸化也已被证明可直接削弱动粒-微管界面。在人类细胞中,有人提出MPS1会在端对端附着的动粒处短暂积累,并磷酸化SKA3以促进微管释放。在多细胞动物中,MPS1是否直接作用于NDC80和/或促进AURORA激酶的活性仍不清楚。在这里,我们报告了一种涉及动粒与中心体之间通讯的新机制,其中MPS1在AAK上游起作用以促进错误校正。靠近纺锤体极的动粒上的MPS1使AAK的C叶磷酸化,从而增加其在中心体处的活性。这种基于邻近性的激活确保建立强大的AAK活性梯度,该梯度会局部破坏纺锤体极附近方向错误的动粒的稳定性。因此,从细胞中耗尽MPS1会导致严重的染色体排列错误和错误的动粒-微管附着,通过将MPS1或组成型活性AAK突变体拴系到中心体可以挽救这种情况。MPS1对AAK的基于邻近性的激活在人类细胞中也会发生,以促进AAK介导的NDC80 N末端尾巴的磷酸化。这些发现揭示了有效错误校正所需的MPS1-AAK相互作用,展示了动粒调节中心体输出以确保正确染色体分离的能力。