Suppr超能文献

基于混合分子筛的具有物理限域和去溶剂化效应的无枝晶锌金属负极界面层

Hybrid Molecular Sieve-Based Interfacial Layer with Physical Confinement and Desolvation Effect for Dendrite-free Zinc Metal Anodes.

作者信息

Xu Jing, Han Pingan, Jin Yang, Lu Hongfei, Sun Bing, Gao Beibei, He Tingting, Xu Xiaoxue, Pinna Nicola, Wang Guoxiu

机构信息

Research Center of Grid Energy Storage and Battery Application, School of Electrical Engineering, Zhengzhou University, Zhengzhou 450001, China.

Centre for Clean Energy Technology, School of Mathematical and Physical Sciences, Faculty of Science, University of Technology Sydney, Ultimo, New South Wales 2007, Australia.

出版信息

ACS Nano. 2024 Jul 16;18(28):18592-18603. doi: 10.1021/acsnano.4c04632. Epub 2024 Jul 1.

Abstract

The side reactions and dendrite growth at the interface of Zn anodes greatly limit their practical applications in Zn metal batteries. Herein, we propose a hybrid molecular sieve-based interfacial layer (denoted as ZM) with a hierarchical porous structure for Zn metal anodes, which contains 70 vol % microporous ZSM-5 molecular sieves and 30 vol % mesoporous MCM-41 molecular sieves. Through comprehensive molecular dynamics simulations, we demonstrate that the mesopores (∼2.5 nm) of MCM-41 can limit the disordered diffusion of free water molecules and increase the wettability of the interfacial layer toward aqueous electrolytes. In addition, the micropores (∼0.56 nm) of ZSM-5 can optimize the Zn solvation structures by reducing the bonded water molecules, which simultaneously decrease the constraint force of solvated water molecules to Zn ions, thus promoting the penetrability and diffusion kinetics of Zn ions in ZM. The synergetic effects from the hybrid molecular sieves maintain a constant Zn concentration on the surface of the Zn electrode during Zn deposition, contributing to dendrite-free Zn anodes. Consequently, ZM-coated Zn electrodes achieved excellent cycling stability in both half and full cells.

摘要

锌阳极界面处的副反应和枝晶生长极大地限制了它们在锌金属电池中的实际应用。在此,我们提出了一种用于锌金属阳极的具有分级多孔结构的基于混合分子筛的界面层(表示为ZM),其包含70体积%的微孔ZSM-5分子筛和30体积%的介孔MCM-41分子筛。通过全面的分子动力学模拟,我们证明MCM-41的介孔(约2.5纳米)可以限制自由水分子的无序扩散,并增加界面层对水性电解质的润湿性。此外,ZSM-5的微孔(约0.56纳米)可以通过减少键合水分子来优化锌溶剂化结构,这同时降低了溶剂化水分子对锌离子的约束力,从而促进锌离子在ZM中的渗透性和扩散动力学。混合分子筛的协同效应在锌沉积过程中使锌电极表面的锌浓度保持恒定,有助于实现无枝晶的锌阳极。因此,涂覆ZM的锌电极在半电池和全电池中均实现了优异的循环稳定性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验