Qian Shichuan, Wang Zhi, Chao Hui, Xu Yinguang, Wei Yulin, Gu Guanghui, Zhao Xinping, Lu Zhiyan, Zhao Jingru, Ren Jianmei, Jin Shaohua, Li Lijie, Chen Kun
School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China.
Gansu Yinguang Chemical Industry Group Co., Ltd, Baiyin 730900, China.
Spectrochim Acta A Mol Biomol Spectrosc. 2024 Nov 15;321:124718. doi: 10.1016/j.saa.2024.124718. Epub 2024 Jun 27.
A new transfer approach was proposed to share calibration models of the hexamethylenetetramine-acetic acid solution for studying hexamethylenetetramine concentration values across different near-infrared (NIR) spectrometers. This approach combines Savitzky-Golay first derivative (S_G_1) and orthogonal signal correction (OSC) preprocessing, along with feature variable optimization using an adaptive chaotic dung beetle optimization (ACDBO) algorithm. The ACDBO algorithm employs tent chaotic mapping and a nonlinear decreasing strategy, enhancing the balance between global and local search capabilities and increasing population diversity to address limitations observed in traditional dung beetle optimization (DBO). Validated using the CEC-2017 benchmark functions, the ACDBO algorithm demonstrated superior convergence speed, accuracy, and stability. In the context of a partial least squares (PLS) regression model for transferring hexamethylenetetramine-acetic acid solutions using NIR spectroscopy, the ACDBO algorithm excelled over alternative methods such as uninformative variable elimination, competitive adaptive reweighted sampling, cuckoo search, grey wolf optimizer, differential evolution, and DBO in efficiency, accuracy of feature variable selection, and enhancement of model predictive performance. The algorithm attained outstanding metrics, including a determination coefficient for the calibration set (R) of 0.99999, a root mean square error for the calibration set (RMSEC) of 0.00195%, a determination coefficient for the validation set (R) of 0.99643, a root mean squared error for the validation set (RMSEV) of 0.03818%, residual predictive deviation (RPD) of 16.72574. Compared to existing OSC, slope and bias correction (S/B), direct standardization (DS), and piecewise direct standardization (PDS) model transfer methods, the novel strategy enhances the accuracy and robustness of model predictions. It eliminates irrelevant background information about the hexamethylenetetramine concentration, thereby minimizing the spectral discrepancies across different instruments. As a result, this approach yields a determination coefficient for the prediction set (R) of 0.96228, a root mean squared error for the prediction set (RMSEP) of 0.12462%, and a relative error rate (RER) of 17.62331, respectively. These figures closely follow those obtained using DS and PDS, which recorded R, RMSEP, and RER values of 0.97505, 0.10135%, 21.67030, and 0.98311, 0.08339%, 26.33552, respectively. Unlike conventional methods such as OSC, S/B, DS, and PDS, this novel approach does not require the analysis of identical samples across different instruments. This characteristic significantly broadens its applicability for model transfer, which is particularly beneficial for transferring specific measurement samples.
提出了一种新的转移方法,用于共享六亚甲基四胺 - 乙酸溶液的校准模型,以研究不同近红外(NIR)光谱仪上的六亚甲基四胺浓度值。该方法结合了Savitzky - Golay一阶导数(S_G_1)和正交信号校正(OSC)预处理,以及使用自适应混沌蜣螂优化(ACDBO)算法进行特征变量优化。ACDBO算法采用帐篷混沌映射和非线性递减策略,增强了全局和局部搜索能力之间的平衡,并增加了种群多样性,以解决传统蜣螂优化(DBO)中观察到的局限性。通过CEC - 2017基准函数验证,ACDBO算法展现出卓越的收敛速度、准确性和稳定性。在使用近红外光谱转移六亚甲基四胺 - 乙酸溶液的偏最小二乘(PLS)回归模型的背景下,ACDBO算法在效率、特征变量选择的准确性以及模型预测性能的提升方面,优于无信息变量消除、竞争自适应重加权采样、布谷鸟搜索、灰狼优化器、差分进化和DBO等替代方法。该算法获得了出色的指标,包括校准集的决定系数(R)为0.99999,校准集的均方根误差(RMSEC)为0.00195%,验证集的决定系数(R)为0.99643,验证集的均方根误差(RMSEV)为0.03818%,残差预测偏差(RPD)为16.72574。与现有的OSC、斜率和偏差校正(S/B)、直接标准化(DS)和分段直接标准化(PDS)模型转移方法相比,这种新策略提高了模型预测的准确性和稳健性。它消除了关于六亚甲基四胺浓度的无关背景信息,从而最小化了不同仪器之间的光谱差异。结果,该方法预测集的决定系数(R)为0.96228,预测集的均方根误差(RMSEP)为0.12462%,相对误差率(RER)为17.62331。这些数字与使用DS和PDS获得的数字非常接近,DS和PDS记录的R、RMSEP和RER值分别为0.97505、0.10135%、21.67030和0.98311、0.08339%、26.33552。与OSC、S/B、DS和PDS等传统方法不同,这种新方法不需要分析不同仪器上的相同样品。这一特性显著拓宽了其在模型转移中的适用性,这对于转移特定测量样品特别有益。