Suppr超能文献

采用单轴拉伸试验对尸体臂丛神经各区域进行生物力学特性分析。

Biomechanical characterization of cadaveric brachial plexus regions using uniaxial tensile tests.

机构信息

ICube, Université de Strasbourg, UMR CNRS 7357, 67000 Strasbourg, France; Hand Surgery, Plastic & Reconstructive Surgery, Grenoble University Hospital, 38000 Grenoble, France.

IRDL (Institut de Recherche Dupuy de Lôme), UMR CNRS 6027, ENSTA Bretagne, Brest, France.

出版信息

Hand Surg Rehabil. 2024 Sep;43(4):101747. doi: 10.1016/j.hansur.2024.101747. Epub 2024 Jun 29.

Abstract

INTRODUCTION

The proximal regions of the brachial plexus (roots, trunks) are more susceptible to permanent damage due to stretch injuries than the distal regions (cords, terminal branches). A better description of brachial plexus mechanical behavior is necessary to better understand deformation mechanisms in stretch injury. The purpose of this study was to model the biomechanical behavior of each portion of the brachial plexus (roots, trunks, cords, peripheral nerves) in a cadaveric model and report differences in elastic modulus, maximum stress and maximum strain.

METHODS

Eight cadaveric plexi, divided into 47 segments according to regions of interest, underwent cyclical uniaxial tensile tests, using a BOSE® Electroforce® 3330 and INSTRON® 5969 material testing machines, to obtain the stress and strain histories of each specimen. Maximum stress, maximum strain and elastic modulus were extracted from the load-displacement and stress-strain curves. Statistical analyses used 1-way ANOVA with post-hoc Tukey HSD (Honestly Significant Difference) and Mann-Whitney tests.

RESULTS

Mean elastic modulus was 8.65 MPa for roots, 8.82 MPa for trunks, 22.44 MPa for cords, and 26.43 MPa for peripheral nerves. Differences in elastic modulus and in maximum stress were statistically significant (p < 0.001) between proximal (roots, trunks) and distal (cords, peripheral nerves) specimens.

CONCLUSIONS

Proximal structures demonstrated significantly smaller elastic modulus and maximum stress than distal structures. These data confirm the greater fragility of proximal regions of the brachial plexus.

摘要

简介

相较于远侧(神经束、末梢分支),臂丛的近侧区域(神经根、干)更容易因拉伸损伤而导致永久性损伤。为了更好地理解拉伸损伤中的变形机制,需要对臂丛的机械行为进行更准确的描述。本研究的目的是在尸体模型中对臂丛的各个部分(神经根、干、神经束、周围神经)的生物力学行为进行建模,并报告弹性模量、最大应力和最大应变的差异。

方法

8 具尸体臂丛标本,根据感兴趣的区域分为 47 个节段,采用 BOSE® Electroforce® 3330 和 INSTRON® 5969 材料试验机进行循环单轴拉伸试验,以获得每个标本的应力和应变历史。从载荷-位移和应力-应变曲线中提取最大应力、最大应变和弹性模量。采用单因素方差分析(one-way ANOVA)进行统计分析,并进行事后 Tukey HSD( Honestly Significant Difference)和 Mann-Whitney 检验。

结果

神经根的平均弹性模量为 8.65 MPa,干的平均弹性模量为 8.82 MPa,神经束的平均弹性模量为 22.44 MPa,周围神经的平均弹性模量为 26.43 MPa。近端(神经根、干)和远侧(神经束、周围神经)标本之间的弹性模量和最大应力差异具有统计学意义(p < 0.001)。

结论

近端结构的弹性模量和最大应力明显小于远侧结构。这些数据证实了臂丛近侧区域的脆弱性。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验