Suppr超能文献

通过时间分辨冷冻电子显微镜观察细菌RNA聚合酶启动子解链的早期中间体。

Early intermediates in bacterial RNA polymerase promoter melting visualized by time-resolved cryo-electron microscopy.

作者信息

Saecker Ruth M, Mueller Andreas U, Malone Brandon, Chen James, Budell William C, Dandey Venkata P, Maruthi Kashyap, Mendez Joshua H, Molina Nina, Eng Edward T, Yen Laura Y, Potter Clinton S, Carragher Bridget, Darst Seth A

机构信息

Laboratory of Molecular Biophysics, The Rockefeller University, New York, NY, USA.

Memorial Sloan Kettering Cancer Center, Sloan Kettering Institute, New York, NY, USA.

出版信息

Nat Struct Mol Biol. 2024 Nov;31(11):1778-1788. doi: 10.1038/s41594-024-01349-9. Epub 2024 Jul 1.

Abstract

During formation of the transcription-competent open complex (RPo) by bacterial RNA polymerases (RNAPs), transient intermediates pile up before overcoming a rate-limiting step. Structural descriptions of these interconversions in real time are unavailable. To address this gap, here we use time-resolved cryogenic electron microscopy (cryo-EM) to capture four intermediates populated 120 ms or 500 ms after mixing Escherichia coli σ-RNAP and the λP promoter. Cryo-EM snapshots revealed that the upstream edge of the transcription bubble unpairs rapidly, followed by stepwise insertion of two conserved nontemplate strand (nt-strand) bases into RNAP pockets. As the nt-strand 'read-out' extends, the RNAP clamp closes, expelling an inhibitory σ domain from the active-site cleft. The template strand is fully unpaired by 120 ms but remains dynamic, indicating that yet unknown conformational changes complete RPo formation in subsequent steps. Given that these events likely describe DNA opening at many bacterial promoters, this study provides insights into how DNA sequence regulates steps of RPo formation.

摘要

在细菌RNA聚合酶(RNAP)形成具有转录活性的开放复合物(RPo)的过程中,瞬时中间体在克服限速步骤之前会不断积累。目前尚无法实时获得这些相互转化的结构描述。为了填补这一空白,我们在此使用时间分辨低温电子显微镜(cryo-EM)来捕获在混合大肠杆菌σ-RNAP和λP启动子后120毫秒或500毫秒时出现的四种中间体。低温电镜快照显示,转录泡的上游边缘迅速解链,随后两个保守的非模板链(nt链)碱基逐步插入RNAP口袋。随着nt链的“读出”延伸,RNAP夹子关闭,将一个抑制性的σ结构域从活性位点裂缝中排出。模板链在120毫秒时完全解链,但仍保持动态,这表明在后续步骤中还有未知的构象变化完成RPo的形成。鉴于这些事件可能描述了许多细菌启动子处的DNA解链情况,本研究为DNA序列如何调节RPo形成步骤提供了见解。

相似文献

1
Early intermediates in bacterial RNA polymerase promoter melting visualized by time-resolved cryo-electron microscopy.
Nat Struct Mol Biol. 2024 Nov;31(11):1778-1788. doi: 10.1038/s41594-024-01349-9. Epub 2024 Jul 1.
5
Structural origins of RNA polymerase open promoter complex stability.
Proc Natl Acad Sci U S A. 2021 Oct 5;118(40). doi: 10.1073/pnas.2112877118.
7
Coupling of downstream RNA polymerase-promoter interactions with formation of catalytically competent transcription initiation complex.
J Mol Biol. 2014 Dec 12;426(24):3973-3984. doi: 10.1016/j.jmb.2014.10.005. Epub 2014 Oct 13.
8
Structural basis of ribosomal RNA transcription regulation.
Nat Commun. 2021 Jan 22;12(1):528. doi: 10.1038/s41467-020-20776-y.
10
E. coli RNA Polymerase Determinants of Open Complex Lifetime and Structure.
J Mol Biol. 2015 Jul 31;427(15):2435-2450. doi: 10.1016/j.jmb.2015.05.024. Epub 2015 Jun 6.

引用本文的文献

1
Mix-it-up: Accessible time-resolved cryo-EM on the millisecond timescale.
bioRxiv. 2025 Jul 26:2025.07.22.666177. doi: 10.1101/2025.07.22.666177.
5
Targeting Bacterial RNA Polymerase: Harnessing Simulations and Machine Learning to Design Inhibitors for Drug-Resistant Pathogens.
Biochemistry. 2025 Mar 18;64(6):1169-1179. doi: 10.1021/acs.biochem.4c00751. Epub 2025 Feb 27.
6
A general RNA-templated RNA extension activity of RNA polymerase.
RNA. 2025 Apr 16;31(5):663-678. doi: 10.1261/rna.080238.124.
7
An extreme mutational hotspot in nlpD depends on transcriptional induction of rpoS.
PLoS Genet. 2025 Jan 31;21(1):e1011572. doi: 10.1371/journal.pgen.1011572. eCollection 2025 Jan.
8
RNA Polymerase II Activity Control of Gene Expression and Involvement in Disease.
J Mol Biol. 2025 Jan 1;437(1):168770. doi: 10.1016/j.jmb.2024.168770. Epub 2024 Aug 28.

本文引用的文献

1
An ensemble of interconverting conformations of the elemental paused transcription complex creates regulatory options.
Proc Natl Acad Sci U S A. 2023 Feb 21;120(8):e2215945120. doi: 10.1073/pnas.2215945120. Epub 2023 Feb 16.
2
Structural insights into RNA-mediated transcription regulation in bacteria.
Mol Cell. 2022 Oct 20;82(20):3885-3900.e10. doi: 10.1016/j.molcel.2022.09.020. Epub 2022 Oct 10.
3
Energy Landscapes for Base-Flipping in a Model DNA Duplex.
J Phys Chem B. 2022 Apr 28;126(16):3012-3028. doi: 10.1021/acs.jpcb.2c00340. Epub 2022 Apr 15.
4
Basis of narrow-spectrum activity of fidaxomicin on Clostridioides difficile.
Nature. 2022 Apr;604(7906):541-545. doi: 10.1038/s41586-022-04545-z. Epub 2022 Apr 6.
5
Structural origins of RNA polymerase open promoter complex stability.
Proc Natl Acad Sci U S A. 2021 Oct 5;118(40). doi: 10.1073/pnas.2112877118.
6
Structural basis of transcriptional activation by the Mycobacterium tuberculosis intrinsic antibiotic-resistance transcription factor WhiB7.
Mol Cell. 2021 Jul 15;81(14):2875-2886.e5. doi: 10.1016/j.molcel.2021.05.017. Epub 2021 Jun 24.
9
3D variability analysis: Resolving continuous flexibility and discrete heterogeneity from single particle cryo-EM.
J Struct Biol. 2021 Jun;213(2):107702. doi: 10.1016/j.jsb.2021.107702. Epub 2021 Feb 11.
10
Non-uniform refinement: adaptive regularization improves single-particle cryo-EM reconstruction.
Nat Methods. 2020 Dec;17(12):1214-1221. doi: 10.1038/s41592-020-00990-8. Epub 2020 Nov 30.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验