Ruiz Manzano Ana, Jensen Drake, Galburt Eric A
Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, Saint Louis, Missouri, USA.
Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, Saint Louis, Missouri, USA.
J Biol Chem. 2025 Jun 12;301(8):110369. doi: 10.1016/j.jbc.2025.110369.
rRNA regulation in Mycobacterium tuberculosis (Mtb) is tightly linked to nutrient availability, growth phase, and global gene expression, influencing Mtb's adaptability and pathogenicity. Unlike most bacteria, Mtb has a single ribosomal operon with two promoters, rrnAP3 and rrnAP1, and a high ratio of sigma (σ) factors to genome size. While σ is the primary driver of ribosomal transcription, σ has been suggested to contribute under various conditions, though its role remains unclear. Here, we quantify steady-state transcription rates in reconstituted reactions and demonstrate that σ-driven transcription from rrnAP3 dominates rRNA production, with minimal contributions from σ or rrnAP1. Kinetic analysis suggests that σ holoenzymes exhibit slower DNA unwinding and holoenzyme recycling. We also show that transcription factors CarD and RbpA reverse and buffer, respectively, the stimulatory effects of negative superhelicity on σ-driven rRNA transcription. Finally, we identify the N-terminal 205 amino acids of σ as a key determinant of its increased activity relative to σ. Our findings reveal the intricate interplay of promoter sequence, σ factor identity, DNA superhelicity, and transcription factors in shaping transcription initiation kinetics to ultimately influence rRNA production in Mtb.
结核分枝杆菌(Mtb)中的核糖体RNA(rRNA)调控与营养物质可用性、生长阶段和全局基因表达紧密相连,影响着Mtb的适应性和致病性。与大多数细菌不同,Mtb有一个带有两个启动子rrnAP3和rrnAP1的单一核糖体操纵子,以及一个较高的σ因子与基因组大小的比例。虽然σ是核糖体转录的主要驱动因子,但有人认为σ在各种条件下都有作用,不过其作用仍不清楚。在这里,我们在重组反应中量化了稳态转录速率,并证明从rrnAP3由σ驱动的转录主导了rRNA的产生,而σ或rrnAP1的贡献极小。动力学分析表明,σ全酶表现出较慢的DNA解旋和全酶循环。我们还表明,转录因子CarD和RbpA分别逆转和缓冲了负超螺旋对σ驱动的rRNA转录的刺激作用。最后,我们确定了σ的N端205个氨基酸是其相对于σ活性增加的关键决定因素。我们的研究结果揭示了启动子序列、σ因子特性、DNA超螺旋和转录因子在塑造转录起始动力学以最终影响Mtb中rRNA产生方面的复杂相互作用。