Suppr超能文献

计算生物学在神经退行性疾病诊断中的进展:全面综述。

Advances in Computational Biology for Diagnosing Neurodegenerative Diseases: A Comprehensive Review.

机构信息

Department of Pharmaceutics, KIET School of Pharmacy, KIET Group of Institutions, Delhi-NCR, Muradnagar, Ghaziabad-201206, UP. India.

Department of Pharmaceutical Sciences and Drug Research, Punjabi University Patiala, India.

出版信息

Zhongguo Ying Yong Sheng Li Xue Za Zhi. 2024 Jul 2;40:e20240008. doi: 10.62958/j.cjap.2024.008.

Abstract

The numerous and varied forms of neurodegenerative illnesses provide a considerable challenge to contemporary healthcare. The emergence of artificial intelligence has fundamentally changed the diagnostic picture by providing effective and early means of identifying these crippling illnesses. As a subset of computational intelligence, machine-learning algorithms have become very effective tools for the analysis of large datasets that include genetic, imaging, and clinical data. Moreover, multi-modal data integration, which includes information from brain imaging (MRI, PET scans), genetic profiles, and clinical evaluations, is made easier by computational intelligence. A thorough knowledge of the course of the illness is made possible by this consolidative method, which also facilitates the creation of predictive models for early medical evaluation and outcome prediction. Furthermore, there has been a great deal of promise shown by the use of artificial intelligence to neuroimaging analysis. Sophisticated image processing methods combined with machine learning algorithms make it possible to identify functional and structural anomalies in the brain, which often act as early indicators of neurodegenerative diseases. This chapter examines how computational intelligence plays a critical role in improving the diagnosis of neurodegenerative diseases such as Parkinson's, Alzheimer's, etc. To sum up, computational intelligence provides a revolutionary approach for improving the identification of neurodegenerative illnesses. In the battle against these difficult disorders, embracing and improving these computational techniques will surely pave the path for more individualized therapy and more therapies that are successful.

摘要

神经退行性疾病的众多形式给当代医疗保健带来了巨大挑战。人工智能的出现通过提供有效和早期的识别这些致残疾病的手段,从根本上改变了诊断图景。作为计算智能的一个子集,机器学习算法已经成为分析包括遗传、成像和临床数据在内的大型数据集的非常有效的工具。此外,计算智能使多模态数据集成(包括来自脑成像(MRI、PET 扫描)、遗传特征和临床评估的信息)变得更加容易。通过这种综合方法,可以更全面地了解疾病的进程,还可以为早期医学评估和预后预测创建预测模型。此外,人工智能在神经影像学分析中的应用也显示出了很大的希望。复杂的图像处理方法与机器学习算法相结合,可以识别大脑中的功能和结构异常,这些异常常常是神经退行性疾病的早期指标。本章探讨了计算智能如何在改善帕金森病、阿尔茨海默病等神经退行性疾病的诊断中发挥关键作用。总之,计算智能为改善神经退行性疾病的识别提供了一种革命性的方法。在与这些棘手的疾病作斗争时,接受和改进这些计算技术肯定会为更个体化的治疗和更成功的治疗铺平道路。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验