Suppr超能文献

磁共振成像和人工智能在帕金森病诊断研究中的应用。

Use of Magnetic Resonance Imaging and Artificial Intelligence in Studies of Diagnosis of Parkinson's Disease.

机构信息

Department of Radiology , the Second Affiliated Hospital of Zhejiang University, School of Medicine , No.88 Jiefang Road , Shangcheng District, Hangzhou 31000 , China.

出版信息

ACS Chem Neurosci. 2019 Jun 19;10(6):2658-2667. doi: 10.1021/acschemneuro.9b00207. Epub 2019 May 24.

Abstract

Parkinson's disease (PD) is a common neurodegenerative disorder. It has a delitescent onset and a slow progress. The clinical manifestations of PD in patients are highly heterogeneous. Thus, PD diagnosis process is complex and mainly depends on the professional knowledge and experience of the physician. Magnetic resonance imaging (MRI) could detect the small changes in the brain of PD patients, and quantitative analysis of brain MRI may improve the clinical diagnosis efficiency. However, due to the complexity of clinical courses in PD and the high dimensionality in multimodal MRI data, traditional mathematical analysis could not effectively extract the huge information in them. Up to now, the accuracy of PD diagnosis in large sample size is still unsatisfying. As artificial intelligence (AI) is becoming more mature, varieties of statistical models and machine learning (ML) algorithms have been used for quantitative imaging data analysis to explore a diagnostic result. This review aims to state an overview of existing research recently that used statistical ML/AI methods to perform quantitative analysis of MR image data for the study of PD diagnosis. First we review the recent research in three subareas: diagnosis, differential diagnosis, and subtyping of PD. Then we described the overall workflow from MR image to classification result. Finally, we summarized a critical assessment of the current research and provide some recommendations for likely future research developments and trends.

摘要

帕金森病(PD)是一种常见的神经退行性疾病。它起病隐匿,进展缓慢。PD 患者的临床表现高度异质。因此,PD 的诊断过程较为复杂,主要依赖于医生的专业知识和经验。磁共振成像(MRI)可以检测到 PD 患者大脑的微小变化,而脑 MRI 的定量分析可能会提高临床诊断的效率。但是,由于 PD 的临床病程复杂,多模态 MRI 数据维度高,传统的数学分析方法无法有效地提取其中的大量信息。迄今为止,在大样本量中 PD 诊断的准确性仍不尽如人意。随着人工智能(AI)的日益成熟,各种统计模型和机器学习(ML)算法已被用于定量成像数据分析,以探索诊断结果。本综述旨在概述最近使用统计 ML/AI 方法对 MR 图像数据进行定量分析以研究 PD 诊断的研究。首先,我们回顾了三个子领域的最新研究:PD 的诊断、鉴别诊断和亚型。然后,我们描述了从 MR 图像到分类结果的整体工作流程。最后,我们对当前研究进行了批判性评估,并为未来可能的研究发展和趋势提供了一些建议。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验