Suppr超能文献

结节性硬化症脑组织中诊断性细胞的多参数定量分析。

Multiparameter quantitative analyses of diagnostic cells in brain tissues from tuberous sclerosis complex.

作者信息

Arceneaux Jerome S, Brockman Asa A, Khurana Rohit, Chalkley Mary-Bronwen L, Geben Laura C, Krbanjevic Aleksandar, Vestal Matthew, Zafar Muhammad, Weatherspoon Sarah, Mobley Bret C, Ess Kevin C, Ihrie Rebecca A

机构信息

Department of Biochemistry, Cancer Biology, Neuroscience, and Pharmacology, Meharry Medical College, Nashville, Tennessee, USA.

Department of Cell & Developmental Biology, Vanderbilt University, Nashville, Tennessee, USA.

出版信息

Cytometry B Clin Cytom. 2025 Jan;108(1):35-54. doi: 10.1002/cyto.b.22194. Epub 2024 Jul 2.

Abstract

The advent of high-dimensional imaging offers new opportunities to molecularly characterize diagnostic cells in disorders that have previously relied on histopathological definitions. One example case is found in tuberous sclerosis complex (TSC), a developmental disorder characterized by systemic growth of benign tumors. Within resected brain tissues from patients with TSC, detection of abnormally enlarged balloon cells (BCs) is pathognomonic for this disorder. Though BCs can be identified by an expert neuropathologist, little is known about the specificity and broad applicability of protein markers for these cells, complicating classification of proposed BCs identified in experimental models of this disorder. Here, we report the development of a customized machine learning pipeline (BAlloon IDENtifier; BAIDEN) that was trained to prospectively identify BCs in tissue sections using a histological stain compatible with high-dimensional cytometry. This approach was coupled to a custom 36-antibody panel and imaging mass cytometry (IMC) to explore the expression of multiple previously proposed BC marker proteins and develop a descriptor of BC features conserved across multiple tissue samples from patients with TSC. Here, we present a modular workflow encompassing BAIDEN, a custom antibody panel, a control sample microarray, and analysis pipelines-both open-source and in-house-and apply this workflow to understand the abundance, structure, and signaling activity of BCs as an example case of how high-dimensional imaging can be applied within human tissues.

摘要

高维成像技术的出现为分子表征诊断细胞提供了新机遇,这些细胞存在于以往依赖组织病理学定义的疾病中。一个典型案例是结节性硬化症(TSC),这是一种发育障碍疾病,其特征为良性肿瘤的全身性生长。在TSC患者切除的脑组织中,检测到异常增大的气球样细胞(BCs)是该疾病的病理特征。尽管BCs可由专业神经病理学家识别,但对于这些细胞的蛋白质标志物的特异性和广泛适用性知之甚少,这使得在该疾病实验模型中鉴定出的拟BCs的分类变得复杂。在此,我们报告了一种定制的机器学习流程(气球识别器;BAIDEN)的开发,该流程经过训练,可使用与高维细胞术兼容的组织学染色在组织切片中前瞻性地识别BCs。这种方法与定制的36抗体组合和成像质谱细胞术(IMC)相结合,以探索多种先前提出的BC标志物蛋白的表达,并开发出一种描述符,用于描述来自TSC患者的多个组织样本中保守的BC特征。在此,我们展示了一个模块化工作流程,包括BAIDEN、定制抗体组合、对照样本微阵列以及开源和内部的分析流程,并将此工作流程应用于了解BCs的丰度、结构和信号活性,以此作为高维成像技术如何应用于人体组织的一个示例。

相似文献

1
Multiparameter quantitative analyses of diagnostic cells in brain tissues from tuberous sclerosis complex.
Cytometry B Clin Cytom. 2025 Jan;108(1):35-54. doi: 10.1002/cyto.b.22194. Epub 2024 Jul 2.
2
Radiomic detection of abnormal brain regions in tuberous sclerosis complex.
Med Phys. 2024 Dec;51(12):9103-9114. doi: 10.1002/mp.17400. Epub 2024 Sep 23.
3
Significance of tuber size for complications of tuberous sclerosis complex.
Neurologia. 2013 Nov-Dec;28(9):550-7. doi: 10.1016/j.nrl.2012.11.002. Epub 2012 Dec 28.
6
Malignant tumors in tuberous sclerosis complex: a case report and review of the literature.
BMC Med Genomics. 2024 May 27;17(1):144. doi: 10.1186/s12920-024-01913-8.
7
Functional aspects of early brain development are preserved in tuberous sclerosis complex (TSC) epileptogenic lesions.
Neurobiol Dis. 2016 Nov;95:93-101. doi: 10.1016/j.nbd.2016.07.014. Epub 2016 Jul 16.
9
Loss of Tsc2 in radial glia models the brain pathology of tuberous sclerosis complex in the mouse.
Hum Mol Genet. 2009 Apr 1;18(7):1252-65. doi: 10.1093/hmg/ddp025. Epub 2009 Jan 15.
10
New developments in the neurobiology of the tuberous sclerosis complex.
Neurology. 1999 Oct 22;53(7):1384-90. doi: 10.1212/wnl.53.7.1384.

引用本文的文献

1
Iconography of abnormal non-neuronal cells in pediatric focal cortical dysplasia type IIb and tuberous sclerosis complex.
Front Cell Neurosci. 2025 Jan 6;18:1486315. doi: 10.3389/fncel.2024.1486315. eCollection 2024.

本文引用的文献

1
Cancer-associated fibroblast phenotypes are associated with patient outcome in non-small cell lung cancer.
Cancer Cell. 2024 Mar 11;42(3):396-412.e5. doi: 10.1016/j.ccell.2023.12.021. Epub 2024 Jan 18.
2
TFEB drives mTORC1 hyperactivation and kidney disease in Tuberous Sclerosis Complex.
Nat Commun. 2024 Jan 9;15(1):406. doi: 10.1038/s41467-023-44229-4.
3
Protocol for tissue processing and paraffin embedding of mouse brains following ex vivo MRI.
STAR Protoc. 2023 Dec 15;4(4):102681. doi: 10.1016/j.xpro.2023.102681. Epub 2023 Nov 9.
4
An end-to-end workflow for multiplexed image processing and analysis.
Nat Protoc. 2023 Nov;18(11):3565-3613. doi: 10.1038/s41596-023-00881-0. Epub 2023 Oct 10.
5
DNA-barcoded signal amplification for imaging mass cytometry enables sensitive and highly multiplexed tissue imaging.
Nat Methods. 2023 Sep;20(9):1304-1309. doi: 10.1038/s41592-023-01976-y. Epub 2023 Aug 31.
7
Cancer-associated fibroblast classification in single-cell and spatial proteomics data.
Nat Commun. 2023 Jul 18;14(1):4294. doi: 10.1038/s41467-023-39762-1.
8
Blocking autofluorescence in brain tissues affected by ischemic stroke, hemorrhagic stroke, or traumatic brain injury.
Front Immunol. 2023 May 29;14:1168292. doi: 10.3389/fimmu.2023.1168292. eCollection 2023.
9
IMC-Denoise: a content aware denoising pipeline to enhance Imaging Mass Cytometry.
Nat Commun. 2023 Mar 23;14(1):1601. doi: 10.1038/s41467-023-37123-6.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验