Suppr超能文献

IMC-Denoise:一种基于内容感知的去噪流水线,用于增强成像质谱细胞术。

IMC-Denoise: a content aware denoising pipeline to enhance Imaging Mass Cytometry.

机构信息

Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, USA.

Department of Radiology, Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, USA.

出版信息

Nat Commun. 2023 Mar 23;14(1):1601. doi: 10.1038/s41467-023-37123-6.

Abstract

Imaging Mass Cytometry (IMC) is an emerging multiplexed imaging technology for analyzing complex microenvironments using more than 40 molecularly-specific channels. However, this modality has unique data processing requirements, particularly for patient tissue specimens where signal-to-noise ratios for markers can be low, despite optimization, and pixel intensity artifacts can deteriorate image quality and downstream analysis. Here we demonstrate an automated content-aware pipeline, IMC-Denoise, to restore IMC images deploying a differential intensity map-based restoration (DIMR) algorithm for removing hot pixels and a self-supervised deep learning algorithm for shot noise image filtering (DeepSNiF). IMC-Denoise outperforms existing methods for adaptive hot pixel and background noise removal, with significant image quality improvement in modeled data and datasets from multiple pathologies. This includes in technically challenging human bone marrow; we achieve noise level reduction of 87% for a 5.6-fold higher contrast-to-noise ratio, and more accurate background noise removal with approximately 2 × improved F1 score. Our approach enhances manual gating and automated phenotyping with cell-scale downstream analyses. Verified by manual annotations, spatial and density analysis for targeted cell groups reveal subtle but significant differences of cell populations in diseased bone marrow. We anticipate that IMC-Denoise will provide similar benefits across mass cytometric applications to more deeply characterize complex tissue microenvironments.

摘要

成像质谱细胞术(IMC)是一种新兴的多重成像技术,可用于分析使用 40 多个分子特异性通道的复杂微环境。然而,这种模式具有独特的数据处理要求,特别是对于患者组织标本,尽管进行了优化,但标记物的信噪比仍然很低,并且像素强度伪影会降低图像质量和下游分析。在这里,我们展示了一种自动化的内容感知管道,即 IMC-Denoise,它使用基于差分强度图的恢复(DIMR)算法来去除热点像素,以及用于拍摄噪声图像滤波的自监督深度学习算法(DeepSNiF),从而恢复 IMC 图像。IMC-Denoise 在自适应热点像素和背景噪声去除方面优于现有方法,在建模数据和来自多种病理学的数据集上都显著提高了图像质量。这包括在技术上具有挑战性的人类骨髓中;我们实现了噪声水平降低 87%,对比度噪声比提高了 5.6 倍,并且通过大约 2 倍的 F1 分数提高了背景噪声去除的准确性。我们的方法通过手动门控和基于细胞尺度的下游分析增强了自动表型分析。通过手动注释验证,针对目标细胞群的空间和密度分析揭示了患病骨髓中细胞群体的细微但显著差异。我们预计,IMC-Denoise 将在整个质谱细胞术应用中提供类似的好处,以更深入地描述复杂的组织微环境。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6585/10036333/562b7d3e3bf8/41467_2023_37123_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验