Li Zelin, Chen Xinping, Li Wenting, Li Jie, Zhang Yujuan, Lu Lisi, Luo Yao, Zhang Chao, Gao Fei, Liu Jing, Zhan Chun, Qiu Xinping
School of Metallurgical and Ecological Engineering, University of Science and Technology Beijing, Beijing 100083, China.
Key Laboratory of Organic Optoelectronics and Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing 100084, China.
ACS Appl Mater Interfaces. 2024 Jul 17;16(28):37288-37297. doi: 10.1021/acsami.4c06491. Epub 2024 Jul 2.
The incompatibility of ether electrolytes with a cathode dramatically limits its application in high-voltage Li metal batteries. Herein, we report a new highly concentrated binary salt ether-based electrolyte (HCBE, 1.25 M LiTFSI + 2.5 M LiFSI in DME) that enables stable cycling of high-voltage lithium metal batteries with the Ni-rich (NCM83, LiNiCoMnO) cathode. Experimental characterizations and density functional theory (DFT) calculations reveal the special solvation structure in HCBE. A solvation structure rich in aggregates (AGGs) can effectively broaden the electrochemical window of the ether electrolyte. The anions in HCBE preferentially decompose under high voltage, forming a CEI film rich in inorganic components to protect the electrolyte from degradation. Thus, the high-energy-density Li||NCM83 cell has a capacity retention of ≈95% after 150 cycles. Significantly, the cells in HCBE have a high and stable average Coulombic efficiency of over 99.9%, much larger than that of 1 M LiPF + EC + EMC + DMC (99%). The result emphasizes that the anionic-driven formation of a cathode electrolyte interface (CEI) can reduce the number of interface side reactions and effectively protect the cathode. Furthermore, the Coulombic efficiency of Li||Cu using the HCBE is 98.5%, underscoring the advantages of using ether-based electrolytes. This work offers novel insights and approaches for the design of high-performance electrolytes for lithium metal batteries.
醚类电解质与阴极的不相容性极大地限制了其在高压锂金属电池中的应用。在此,我们报道了一种新型的高浓度二元盐醚基电解质(HCBE,在二甲基醚(DME)中为1.25 M 双三氟甲烷磺酰亚胺锂(LiTFSI) + 2.5 M 双氟磺酰亚胺锂(LiFSI)),它能够使采用富镍(NCM83,LiNiCoMnO)阴极的高压锂金属电池实现稳定循环。实验表征和密度泛函理论(DFT)计算揭示了HCBE中的特殊溶剂化结构。富含聚集体(AGGs)的溶剂化结构能够有效拓宽醚类电解质的电化学窗口。HCBE中的阴离子在高压下优先分解,形成富含无机成分的阴极电解质界面(CEI)膜,以保护电解质不被降解。因此,高能量密度的锂||NCM83电池在150次循环后容量保持率约为95%。值得注意的是,采用HCBE的电池具有高于99.9%的高且稳定的平均库仑效率,远高于1 M 六氟磷酸锂(LiPF) + 碳酸乙烯酯(EC) + 碳酸甲乙酯(EMC) + 碳酸二甲酯(DMC)(99%)的库仑效率。该结果强调了阴离子驱动形成的阴极电解质界面(CEI)能够减少界面副反应的数量并有效保护阴极。此外,采用HCBE的锂||铜电池的库仑效率为98.5%,突出了使用醚基电解质的优势。这项工作为锂金属电池高性能电解质的设计提供了新的见解和方法。