A.A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Boston, MA, USA.
Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA, USA.
Sci Data. 2024 Jul 2;11(1):721. doi: 10.1038/s41597-024-03469-9.
Patients with congenital heart disease often have cardiac anatomy that deviates significantly from normal, frequently requiring multiple heart surgeries. Image segmentation from a preoperative cardiovascular magnetic resonance (CMR) scan would enable creation of patient-specific 3D surface models of the heart, which have potential to improve surgical planning, enable surgical simulation, and allow automatic computation of quantitative metrics of heart function. However, there is no publicly available CMR dataset for whole-heart segmentation in patients with congenital heart disease. Here, we release the HVSMR-2.0 dataset, comprising 60 CMR scans alongside manual segmentation masks of the 4 cardiac chambers and 4 great vessels. The images showcase a wide range of heart defects and prior surgical interventions. The dataset also includes masks of required and optional extents of the great vessels, enabling fairer comparisons across algorithms. Detailed diagnoses for each subject are also provided. By releasing HVSMR-2.0, we aim to encourage development of robust segmentation algorithms and clinically relevant tools for congenital heart disease.
患有先天性心脏病的患者的心脏解剖结构通常与正常情况有很大差异,经常需要多次心脏手术。从术前心血管磁共振(CMR)扫描中进行图像分割,可以创建患者特定的心脏 3D 表面模型,这具有改善手术计划、实现手术模拟以及允许自动计算心脏功能定量指标的潜力。然而,目前还没有用于先天性心脏病全心脏分割的公开可用的 CMR 数据集。在这里,我们发布了 HVSMR-2.0 数据集,其中包含 60 个 CMR 扫描以及 4 个心腔和 4 个大血管的手动分割掩模。这些图像展示了广泛的心脏缺陷和先前的手术干预。该数据集还包括大血管所需和可选范围的掩模,从而能够在算法之间进行更公平的比较。还为每个受试者提供了详细的诊断。通过发布 HVSMR-2.0,我们旨在鼓励开发用于先天性心脏病的强大分割算法和临床相关工具。