Suppr超能文献

HVSMR-2.0:用于先天性心脏病全心脏分割的 3D 心血管磁共振数据集。

HVSMR-2.0: A 3D cardiovascular MR dataset for whole-heart segmentation in congenital heart disease.

机构信息

A.A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Boston, MA, USA.

Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA, USA.

出版信息

Sci Data. 2024 Jul 2;11(1):721. doi: 10.1038/s41597-024-03469-9.

Abstract

Patients with congenital heart disease often have cardiac anatomy that deviates significantly from normal, frequently requiring multiple heart surgeries. Image segmentation from a preoperative cardiovascular magnetic resonance (CMR) scan would enable creation of patient-specific 3D surface models of the heart, which have potential to improve surgical planning, enable surgical simulation, and allow automatic computation of quantitative metrics of heart function. However, there is no publicly available CMR dataset for whole-heart segmentation in patients with congenital heart disease. Here, we release the HVSMR-2.0 dataset, comprising 60 CMR scans alongside manual segmentation masks of the 4 cardiac chambers and 4 great vessels. The images showcase a wide range of heart defects and prior surgical interventions. The dataset also includes masks of required and optional extents of the great vessels, enabling fairer comparisons across algorithms. Detailed diagnoses for each subject are also provided. By releasing HVSMR-2.0, we aim to encourage development of robust segmentation algorithms and clinically relevant tools for congenital heart disease.

摘要

患有先天性心脏病的患者的心脏解剖结构通常与正常情况有很大差异,经常需要多次心脏手术。从术前心血管磁共振(CMR)扫描中进行图像分割,可以创建患者特定的心脏 3D 表面模型,这具有改善手术计划、实现手术模拟以及允许自动计算心脏功能定量指标的潜力。然而,目前还没有用于先天性心脏病全心脏分割的公开可用的 CMR 数据集。在这里,我们发布了 HVSMR-2.0 数据集,其中包含 60 个 CMR 扫描以及 4 个心腔和 4 个大血管的手动分割掩模。这些图像展示了广泛的心脏缺陷和先前的手术干预。该数据集还包括大血管所需和可选范围的掩模,从而能够在算法之间进行更公平的比较。还为每个受试者提供了详细的诊断。通过发布 HVSMR-2.0,我们旨在鼓励开发用于先天性心脏病的强大分割算法和临床相关工具。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9f0e/11219801/7a060fcdc70c/41597_2024_3469_Fig1_HTML.jpg

相似文献

4
First printed 3D heart model based on cardiac magnetic resonance imaging data in Slovakia.
Bratisl Lek Listy. 2018;119(12):781-784. doi: 10.4149/BLL_2018_142.
5
A Myocardial Segmentation Method Based on Adversarial Learning.
Biomed Res Int. 2021 Feb 26;2021:6618918. doi: 10.1155/2021/6618918. eCollection 2021.
6
Impact of 3D Printouts in Optimizing Surgical Results for Complex Congenital Heart Disease.
World J Pediatr Congenit Heart Surg. 2019 Sep;10(5):533-538. doi: 10.1177/2150135119852316.
7
Automated segmentation of 3D cine cardiovascular magnetic resonance imaging.
Front Cardiovasc Med. 2023 Oct 13;10:1167500. doi: 10.3389/fcvm.2023.1167500. eCollection 2023.
9
An integrated deep learning framework for joint segmentation of blood pool and myocardium.
Med Image Anal. 2020 May;62:101685. doi: 10.1016/j.media.2020.101685. Epub 2020 Mar 5.
10
Fusion of CT coronary angiography and whole-heart dynamic 3D cardiac MR perfusion: building a framework for comprehensive cardiac imaging.
Int J Cardiovasc Imaging. 2018 Apr;34(4):649-660. doi: 10.1007/s10554-017-1260-6. Epub 2017 Oct 28.

引用本文的文献

3
Greater than the sum of its parts: multimodality imaging in adults with congenital heart disease.
Cardiovasc Diagn Ther. 2024 Dec 31;14(6):1176-1185. doi: 10.21037/cdt-24-363. Epub 2024 Dec 19.

本文引用的文献

1
SlicerHeart: An open-source computing platform for cardiac image analysis and modeling.
Front Cardiovasc Med. 2022 Sep 6;9:886549. doi: 10.3389/fcvm.2022.886549. eCollection 2022.
3
Simulation of Delivery of Clip-Based Therapies Within Multimodality Images to Facilitate Preprocedural Planning.
J Am Soc Echocardiogr. 2021 Oct;34(10):1111-1114. doi: 10.1016/j.echo.2021.07.001. Epub 2021 Jul 15.
4
Modeling Tool for Rapid Virtual Planning of the Intracardiac Baffle in Double-Outlet Right Ventricle.
Ann Thorac Surg. 2021 Jun;111(6):2078-2083. doi: 10.1016/j.athoracsur.2021.02.058. Epub 2021 Mar 6.
6
Role of surgeon intuition and computer-aided design in Fontan optimization: A computational fluid dynamics simulation study.
J Thorac Cardiovasc Surg. 2020 Jul;160(1):203-212.e2. doi: 10.1016/j.jtcvs.2019.12.068. Epub 2020 Jan 8.
7
Artificial intelligence in pediatric and adult congenital cardiac MRI: an unmet clinical need.
Cardiovasc Diagn Ther. 2019 Oct;9(Suppl 2):S310-S325. doi: 10.21037/cdt.2019.06.09.
9
Evaluation of algorithms for Multi-Modality Whole Heart Segmentation: An open-access grand challenge.
Med Image Anal. 2019 Dec;58:101537. doi: 10.1016/j.media.2019.101537. Epub 2019 Aug 1.
10
Quantitative cardiac MRI.
J Magn Reson Imaging. 2020 Mar;51(3):693-711. doi: 10.1002/jmri.26789. Epub 2019 May 20.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验