Suppr超能文献

一种用于减少高光谱中子计算机断层扫描系统扫描时间的机器学习决策标准。

A machine learning decision criterion for reducing scan time for hyperspectral neutron computed tomography systems.

作者信息

Tang Shimin, Venkatakrishnan Singanallur V, Chowdhury Mohammad S N, Yang Diyu, Gober Megan, Nelson George J, Cekanova Maria, Biris Alexandru S, Buzzard Gregery T, Bouman Charles A, Skorpenske Harley D, Bilheux Hassina Z

机构信息

Oak Ridge National Laboratory, Neutron Scattering Division, Oak Ridge, 37831, USA.

Oak Ridge National Laboratory, Electrification and Energy Infrastructure Division, Oak Ridge, 37831, USA.

出版信息

Sci Rep. 2024 Jul 2;14(1):15171. doi: 10.1038/s41598-024-63931-x.

Abstract

We present the first machine learning-based autonomous hyperspectral neutron computed tomography experiment performed at the Spallation Neutron Source. Hyperspectral neutron computed tomography allows the characterization of samples by enabling the reconstruction of crystallographic information and elemental/isotopic composition of objects relevant to materials science. High quality reconstructions using traditional algorithms such as the filtered back projection require a high signal-to-noise ratio across a wide wavelength range combined with a large number of projections. This results in scan times of several days to acquire hundreds of hyperspectral projections, during which end users have minimal feedback. To address these challenges, a golden ratio scanning protocol combined with model-based image reconstruction algorithms have been proposed. This novel approach enables high quality real-time reconstructions from streaming experimental data, thus providing feedback to users, while requiring fewer yet a fixed number of projections compared to the filtered back projection method. In this paper, we propose a novel machine learning criterion that can terminate a streaming neutron tomography scan once sufficient information is obtained based on the current set of measurements. Our decision criterion uses a quality score which combines a reference-free image quality metric computed using a pre-trained deep neural network with a metric that measures differences between consecutive reconstructions. The results show that our method can reduce the measurement time by approximately a factor of five compared to a baseline method based on filtered back projection for the samples we studied while automatically terminating the scans.

摘要

我们展示了在散裂中子源进行的首个基于机器学习的自主高光谱中子计算机断层扫描实验。高光谱中子计算机断层扫描通过重建与材料科学相关物体的晶体学信息以及元素/同位素组成,从而实现对样品的表征。使用传统算法(如滤波反投影)进行高质量重建需要在宽波长范围内具有高信噪比,并结合大量投影。这导致获取数百个高光谱投影的扫描时间长达数天,在此期间终端用户获得的反馈极少。为应对这些挑战,已提出一种黄金比例扫描协议与基于模型的图像重建算法相结合的方法。这种新颖的方法能够根据流式实验数据进行高质量实时重建,从而为用户提供反馈,同时与滤波反投影方法相比,所需的投影数量更少且固定。在本文中,我们提出了一种新颖的机器学习准则,该准则能够在基于当前测量集获得足够信息后终止流式中子断层扫描。我们的决策准则使用一个质量分数,该分数将使用预训练深度神经网络计算的无参考图像质量指标与测量连续重建之间差异的指标相结合。结果表明,与我们研究的样本基于滤波反投影的基线方法相比,我们的方法可将测量时间缩短约五倍,同时自动终止扫描。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1777/11220078/bc2b59b832ae/41598_2024_63931_Fig1_HTML.jpg

相似文献

2
Improved Acquisition and Reconstruction for Wavelength-Resolved Neutron Tomography.
J Imaging. 2021 Jan 15;7(1):10. doi: 10.3390/jimaging7010010.
3
PGNet: Projection generative network for sparse-view reconstruction of projection-based magnetic particle imaging.
Med Phys. 2023 Apr;50(4):2354-2371. doi: 10.1002/mp.16048. Epub 2022 Oct 23.
9
Two-stage deep learning network-based few-view image reconstruction for parallel-beam projection tomography.
Quant Imaging Med Surg. 2022 Apr;12(4):2535-2551. doi: 10.21037/qims-21-778.

引用本文的文献

1
Isotopic imaging with epithermal neutrons at the ISIS Neutron and Muon Source.
Sci Rep. 2025 Jun 2;15(1):19344. doi: 10.1038/s41598-025-04283-y.

本文引用的文献

1
Improved Acquisition and Reconstruction for Wavelength-Resolved Neutron Tomography.
J Imaging. 2021 Jan 15;7(1):10. doi: 10.3390/jimaging7010010.
3
CNN as model observer in a liver lesion detection task for x-ray computed tomography: A phantom study.
Med Phys. 2018 Oct;45(10):4439-4447. doi: 10.1002/mp.13151. Epub 2018 Sep 18.
4
Deep CNN-Based Blind Image Quality Predictor.
IEEE Trans Neural Netw Learn Syst. 2019 Jan;30(1):11-24. doi: 10.1109/TNNLS.2018.2829819. Epub 2018 Jun 12.
5
Design of a practical model-observer-based image quality assessment method for x-ray computed tomography imaging systems.
J Med Imaging (Bellingham). 2016 Jul;3(3):035503. doi: 10.1117/1.JMI.3.3.035503. Epub 2016 Jul 28.
6
Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks.
IEEE Trans Pattern Anal Mach Intell. 2017 Jun;39(6):1137-1149. doi: 10.1109/TPAMI.2016.2577031. Epub 2016 Jun 6.
7
Image quality in CT: From physical measurements to model observers.
Phys Med. 2015 Dec;31(8):823-843. doi: 10.1016/j.ejmp.2015.08.007. Epub 2015 Oct 12.
8
scikit-image: image processing in Python.
PeerJ. 2014 Jun 19;2:e453. doi: 10.7717/peerj.453. eCollection 2014.
9
3D mapping of crystallographic phase distribution using energy-selective neutron tomography.
Adv Mater. 2014 Jun 25;26(24):4069-73. doi: 10.1002/adma.201400192. Epub 2014 Apr 2.
10
Regridding reconstruction algorithm for real-time tomographic imaging.
J Synchrotron Radiat. 2012 Nov;19(Pt 6):1029-37. doi: 10.1107/S0909049512032864. Epub 2012 Sep 1.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验