Department of Chemical Engineering, Northeastern University, Boston, Massachusetts, USA.
Joint Genome Institute, Lawrence Berkeley National Laboratory, The US Department of Energy, Berkeley, California, USA.
Biotechnol Bioeng. 2024 Oct;121(10):3360-3366. doi: 10.1002/bit.28796. Epub 2024 Jul 2.
Acetogenic Clostridia are obligate anaerobes that have emerged as promising microbes for the renewable production of biochemicals owing to their ability to efficiently metabolize sustainable single-carbon feedstocks. Additionally, Clostridia are increasingly recognized for their biosynthetic potential, with recent discoveries of diverse secondary metabolites ranging from antibiotics to pigments to modulators of the human gut microbiota. Lack of efficient methods for genomic integration and expression of large heterologous DNA constructs remains a major challenge in studying biosynthesis in Clostridia and using them for metabolic engineering applications. To overcome this problem, we harnessed chassis-independent recombinase-assisted genome engineering (CRAGE) to develop a workflow for facile integration of large gene clusters (>10 kb) into the human gut acetogen Eubacterium limosum. We then integrated a non-ribosomal peptide synthetase gene cluster from the gut anaerobe Clostridium leptum, which previously produced no detectable product in traditional heterologous hosts. Chromosomal expression in E. limosum without further optimization led to production of phevalin at 2.4 mg/L. These results further expand the molecular toolkit for a highly tractable member of the Clostridia, paving the way for sophisticated pathway engineering efforts, and highlighting the potential of E. limosum as a Clostridial chassis for exploration of anaerobic natural product biosynthesis.
产乙酸细菌是专性厌氧菌,由于其能够高效代谢可持续的单碳原料,因此它们已成为可再生生物化学物质生产的有前途的微生物。此外,产乙酸细菌的生物合成潜力也越来越受到关注,最近发现了从抗生素到色素到调节人类肠道微生物群的各种不同的次生代谢物。缺乏有效的基因组整合和表达大型异源 DNA 构建体的方法仍然是研究产乙酸细菌生物合成和将其用于代谢工程应用的主要挑战。为了克服这个问题,我们利用无底盘依赖重组酶辅助基因组工程 (CRAGE) 为人类肠道产乙酸细菌 Eubacterium limosum 开发了一种简便的大型基因簇 (>10 kb) 整合方法。然后,我们整合了来自肠道厌氧菌 Clostridium leptum 的非核糖体肽合成酶基因簇,该基因簇以前在传统的异源宿主中没有产生可检测到的产物。在无需进一步优化的情况下,在 E. limosum 中进行染色体表达导致 phevalin 的产量达到 2.4 mg/L。这些结果进一步扩展了高度可处理的产乙酸细菌的分子工具包,为复杂的途径工程努力铺平了道路,并突出了 E. limosum 作为探索厌氧天然产物生物合成的产乙酸细菌底盘的潜力。