Suppr超能文献

噬菌体丝氨酸整合酶介导的基因组工程在产气体梭菌中高效表达化学生物合成途径。

Phage serine integrase-mediated genome engineering for efficient expression of chemical biosynthetic pathway in gas-fermenting Clostridium ljungdahlii.

机构信息

Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China.

Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China; Jiangsu National Synergetic Innovation Center for Advanced Materials, SICAM, 200 North Zhongshan Road, Nanjing 210009, China.

出版信息

Metab Eng. 2019 Mar;52:293-302. doi: 10.1016/j.ymben.2019.01.005. Epub 2019 Jan 8.

Abstract

The real value of gas-fermenting clostridia, capable of using CO and CO, resides in their potential of being developed into cell factories to produce various bulk chemicals and fuels. This process requires rapid chromosomal integration of heterologous chemical biosynthetic pathways, which is impeded by the absence of genetic tools competent for efficient genome engineering in these anaerobes. Here, we developed a phage serine integrase-mediated site-specific genome engineering technique in Clostridium ljungdahlii, one of the major acetogenic gas-fermenting microbes. Two heterologous phage attachment/integration (Att/Int) systems (from Clostridium difficile and Streptomyces) were introduced into C. ljungdahlii and proven to be highly active, achieving efficient chromosomal integration of a whole donor vector via single-crossover recombination. Based on this, we further realized markerless chromosomal integration of target DNA fragments through a "dual integrase cassette exchange" (DICE) strategy with the assistance of the CRISPR-Cas9 editing system. As a proof of concept, a butyric acid production pathway from Clostridium acetobutylicum was integrated into the C. ljungdahlii genome without the introduction of extra markers, enabling stable expression of the pathway genes. The resulting engineered strain produced 1.01 g/L of butyric acid within 3 days by fermenting synthesis gas (CO/CO). More importantly, the engineered strain showed good genetic stability and maintained butyric acid production ability after continuous subculturing. The system developed in this study overcomes the deficiencies of currently available genetic tools in the chromosomal integration of large DNA fragments (rapid, markerless and stable) in C. ljungdahlii, and may be extended to other Clostridium species.

摘要

产甲烷梭菌能够利用 CO 和 CO2,其真正价值在于它们有可能被开发成细胞工厂,用于生产各种大宗化学品和燃料。这个过程需要快速地将异源化学生物合成途径整合到染色体上,但这些厌氧菌缺乏有效的基因组工程遗传工具,这一过程受到阻碍。在这里,我们开发了一种在产乙酸产甲烷菌 Clostridium ljungdahlii 中基于噬菌体丝氨酸整合酶的特异性基因组工程技术。我们将两种异源噬菌体附着/整合(Att/Int)系统(来自 Clostridium difficile 和 Streptomyces)引入 C. ljungdahlii 中,并证明它们具有高度的活性,能够通过单交换重组有效地将整个供体载体整合到染色体上。在此基础上,我们进一步利用 CRISPR-Cas9 编辑系统辅助“双整合酶盒交换”(DICE)策略,实现了无标记的染色体目标 DNA 片段整合。作为概念验证,我们将来自 Clostridium acetobutylicum 的丁酸生产途径整合到 C. ljungdahlii 基因组中,而不引入额外的标记,从而使途径基因能够稳定表达。该工程菌株在发酵合成气(CO/CO2)时,3 天内产生了 1.01 g/L 的丁酸。更重要的是,该工程菌株在连续传代后表现出良好的遗传稳定性,并保持了丁酸生产能力。本研究中开发的系统克服了目前可用的遗传工具在 C. ljungdahlii 中快速、无标记、稳定地整合大 DNA 片段的局限性,并且可以扩展到其他梭菌属物种。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验