Suppr超能文献

构建基于 Cas9 反向筛选的基因编辑系统用于产乙酸菌的无痕基因组工程改造

Development of a Recombineering System for the Acetogen with Cas9 Counterselection for Markerless Genome Engineering.

机构信息

Department of Chemical Engineering, Northeastern University, 360 Huntington Avenue, 223 Cullinane, Boston, Massachusetts 02115, United States.

出版信息

ACS Synth Biol. 2024 Aug 16;13(8):2505-2514. doi: 10.1021/acssynbio.4c00253. Epub 2024 Jul 21.

Abstract

is a Clostridial acetogen that efficiently utilizes a wide range of single-carbon substrates and contributes to metabolism of health-associated compounds in the human gut microbiota. These traits have led to interest in developing it as a platform for sustainable CO-based biofuel production to combat carbon emissions, and for exploring the importance of the microbiota in human health. However, synthetic biology and metabolic engineering in have been hindered by the inability to rapidly make precise genomic modifications. Here, we screened a diverse library of recombinase proteins to develop a highly efficient oligonucleotide-based recombineering system based on the viral recombinase RecT. Following optimization, the system is capable of catalyzing ssDNA recombination at an efficiency of up to 2%. Addition of a Cas9 counterselection system eliminated unrecombined cells, with up to 100% of viable cells encoding the desired mutation, enabling creation of genomic point mutations in a scarless and markerless manner. We deployed this system to create a clean knockout of the extracellular polymeric substance (EPS) gene cluster, generating a strain incapable of biofilm formation. This approach is rapid and simple, not requiring laborious homology arm cloning, and can readily be retargeted to almost any genomic locus. This work overcomes a major bottleneck in genetic engineering by enabling precise genomic modifications, and provides both a roadmap and associated recombinase plasmid library for developing similar systems in other Clostridia of interest.

摘要

是一种梭菌乙酰生成菌,能够高效利用广泛的单碳底物,并有助于人体肠道微生物群中与健康相关的化合物的代谢。这些特性使得人们有兴趣将其开发为一种可持续的基于 CO 的生物燃料生产平台,以应对碳排放,并探索微生物群在人类健康中的重要性。然而,由于无法快速进行精确的基因组修饰,的合成生物学和代谢工程一直受到阻碍。在这里,我们筛选了多样化的重组酶蛋白文库,开发了一种基于病毒重组酶 RecT 的高效基于寡核苷酸的重组系统。经过优化,该系统能够以高达 2%的效率催化 ssDNA 重组。添加 Cas9 反选择系统消除了未重组的细胞,可达 100%的活细胞编码所需的突变,从而能够以无疤痕和无标记的方式创建基因组点突变。我们利用该系统对细胞外聚合物质(EPS)基因簇进行了无痕敲除,生成了无法形成生物膜的菌株。这种方法快速而简单,不需要繁琐的同源臂克隆,并且可以很容易地针对几乎任何基因组位点进行重新靶向。这项工作通过实现精确的基因组修饰克服了在遗传工程中的一个主要瓶颈,并为在其他感兴趣的梭菌中开发类似系统提供了路线图和相关的重组酶质粒文库。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ee72/11334238/8ac177b98fee/sb4c00253_0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验