Weisbord Inbal, Barzilay Maya, Cai Ruoke, Welter Edmund, Kuzmin Alexei, Anspoks Andris, Segal-Peretz Tamar
Department of Chemical Engineering, Technion - Israel Institute of Technology, 3200003 Haifa, Israel.
Deutsches Elektronen-Synchrotron - A Research Centre of the Helmholtz Association, Notkestrasse 85, D-22607 Hamburg, Germany.
ACS Nano. 2024 Jul 16;18(28):18393-18404. doi: 10.1021/acsnano.4c02846. Epub 2024 Jul 2.
Sequential infiltration synthesis (SIS), also known as vapor phase infiltration (VPI), is a quickly expanding technique that allows growth of inorganic materials within polymers from vapor phase precursors. With an increasing materials library, which encompasses numerous organometallic precursors and polymer chemistries, and an expanding application space, the importance of understanding the mechanisms that govern SIS growth is ever increasing. In this work, we studied the growth of polycrystalline ZnO clusters and particles in three representative polymers: poly(methyl methacrylate), SU-8, and polymethacrolein using vapor phase diethyl zinc and water. Utilizing two atomic resolution methods, high-resolution scanning transmission electron microscopy and synchrotron X-ray absorption spectroscopy, we probed the evolution of ZnO nanocrystals size and crystallinity level inside the polymers with advancing cycles─from early nucleation and growth after a single cycle, through the formation of nanometric particles within the films, and to the coalescence of the particles upon polymer removal and thermal treatment. Through Fourier transform infrared spectroscopy and microgravimetry, we highlight the important role of water molecules throughout the process and the polymers' hygroscopic level that leads to the observed differences in growth patterns between the polymers, in terms of particle size, dispersity, and the evolution of crystalline order. These insights expand our understanding of crystalline materials growth within polymers and enable rational design of hybrid materials and polymer-templated inorganic nanostructures.
顺序浸润合成(SIS),也称为气相浸润(VPI),是一种快速发展的技术,它能够使无机材料从气相前驱体在聚合物内部生长。随着材料库不断扩大,其中包含众多有机金属前驱体和聚合物化学体系,以及应用空间不断拓展,理解控制SIS生长的机制变得愈发重要。在这项工作中,我们使用气相二乙基锌和水,研究了多晶ZnO团簇和颗粒在三种代表性聚合物:聚甲基丙烯酸甲酯、SU-8和聚甲基丙烯醛中的生长情况。利用两种原子分辨率方法,即高分辨率扫描透射电子显微镜和同步加速器X射线吸收光谱,我们探究了随着循环次数增加,聚合物内部ZnO纳米晶体尺寸和结晶度水平的演变——从单次循环后的早期成核和生长,到薄膜内纳米颗粒的形成,再到聚合物去除和热处理后颗粒的聚结。通过傅里叶变换红外光谱和微量热重分析,我们强调了水分子在整个过程中的重要作用以及聚合物的吸湿水平,正是这种吸湿水平导致了聚合物之间在生长模式上观察到的差异,包括颗粒尺寸、分散性以及结晶顺序的演变。这些见解扩展了我们对聚合物内部晶体材料生长的理解,并有助于合理设计混合材料和聚合物模板无机纳米结构。