Ham Jiwoong, Ko Minkyung, Choi Boyun, Kim Hyeong-U, Jeon Nari
Department of Materials Science and Engineering, Chungnam National University, Daejeon 34134, Korea.
Department of Plasma Engineering, Korea Institute of Machinery & Materials (KIMM), Daejeon 34103, Korea.
Sensors (Basel). 2022 Aug 16;22(16):6132. doi: 10.3390/s22166132.
Sequential infiltration synthesis (SIS) is a novel technique for fabricating organic-inorganic hybrid materials and porous inorganic materials by leveraging the diffusion of gas-phase precursors into a polymer matrix and chemical reactions between the precursors to synthesize inorganic materials therein. This study aims to obtain a fundamental understanding of the physicochemical mechanisms behind SIS, from which the SIS processing conditions are rationally designed to obtain precise control over the distribution of metal oxides. Herein, in situ FTIR spectroscopy was correlated with various ex situ characterization techniques to study a model system involving the growth of aluminum oxides in poly(methyl methacrylate) using trimethyl aluminum (TMA) and water as the metal precursor and co-reactant, respectively. We identified the prominent chemical states of the sorbed TMA precursors: (1) freely diffusing precursors, (2) weakly bound precursors, and (3) precursors strongly bonded to pre-existing oxide clusters and studied how their relative contributions to oxide formation vary in relation to the changes in the rate-limiting step under different growth conditions. Finally, we demonstrate that uniform incorporation of metal oxide is realized by a rational design of processing conditions, by which the major chemical species contributing to oxide formation is modulated.
顺序浸润合成(SIS)是一种通过利用气相前驱体扩散到聚合物基体中以及前驱体之间的化学反应在其中合成无机材料来制备有机-无机杂化材料和多孔无机材料的新技术。本研究旨在对SIS背后的物理化学机制有基本的了解,据此合理设计SIS工艺条件以精确控制金属氧化物的分布。在此,将原位傅里叶变换红外光谱与各种非原位表征技术相关联,以研究一个模型体系,该体系分别使用三甲基铝(TMA)和水作为金属前驱体和共反应物,在聚甲基丙烯酸甲酯中生长氧化铝。我们确定了吸附的TMA前驱体的主要化学状态:(1)自由扩散的前驱体,(2)弱结合的前驱体,以及(3)与预先存在的氧化物簇强烈结合的前驱体,并研究了在不同生长条件下,它们对氧化物形成的相对贡献如何随限速步骤的变化而变化。最后,我们证明通过合理设计工艺条件可以实现金属氧化物的均匀掺入,通过该设计可以调节对氧化物形成有贡献的主要化学物种。