Suppr超能文献

对接评分 ML:针对 155 个靶标,基于对接的虚拟筛选的目标特异性机器学习模型的改进。

Docking Score ML: Target-Specific Machine Learning Models Improving Docking-Based Virtual Screening in 155 Targets.

机构信息

Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China.

Key Laboratory of Intelligent Drug Design and New Drug Discovery of Liaoning Province, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China.

出版信息

J Chem Inf Model. 2024 Jul 22;64(14):5413-5426. doi: 10.1021/acs.jcim.4c00072. Epub 2024 Jul 3.

Abstract

In drug discovery, molecular docking methods face challenges in accurately predicting energy. Scoring functions used in molecular docking often fail to simulate complex protein-ligand interactions fully and accurately leading to biases and inaccuracies in virtual screening and target predictions. We introduce the "Docking Score ML", developed from an analysis of over 200,000 docked complexes from 155 known targets for cancer treatments. The scoring functions used are founded on bioactivity data sourced from ChEMBL and have been fine-tuned using both supervised machine learning and deep learning techniques. We validated our approach extensively using multiple data sets such as validation of selectivity mechanism, the DUDE, DUD-AD, and LIT-PCBA data sets, and performed a multitarget analysis on drugs like sunitinib. To enhance prediction accuracy, feature fusion techniques were explored. By merging the capabilities of the Graph Convolutional Network (GCN) with multiple docking functions, our results indicated a clear superiority of our methodologies over conventional approaches. These advantages demonstrate that Docking Score ML is an efficient and accurate tool for virtual screening and reverse docking.

摘要

在药物发现中,分子对接方法在准确预测能量方面面临挑战。分子对接中使用的评分函数往往无法完全准确地模拟复杂的蛋白质-配体相互作用,从而导致虚拟筛选和靶标预测中的偏差和不准确性。我们引入了“Docking Score ML”,它是从对来自 155 个癌症治疗靶点的超过 200,000 个对接复合物的分析中开发出来的。使用的评分函数基于来自 ChEMBL 的生物活性数据,并使用监督机器学习和深度学习技术进行了微调。我们使用多个数据集(例如选择性机制验证、DUDE、DUD-AD 和 LIT-PCBA 数据集)对我们的方法进行了广泛验证,并对索拉非尼等药物进行了多靶标分析。为了提高预测准确性,我们探索了特征融合技术。通过将图卷积网络 (GCN) 的功能与多个对接功能相结合,我们的结果表明我们的方法明显优于传统方法。这些优势表明,Docking Score ML 是虚拟筛选和反向对接的有效且准确的工具。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验