Suppr超能文献

通过纳入打分函数校正项来提高蛋白-配体对接和筛选的准确性。

Improving protein-ligand docking and screening accuracies by incorporating a scoring function correction term.

机构信息

Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China.

Shanghai Zelixir Biotech Company Ltd., Shanghai 200030, China.

出版信息

Brief Bioinform. 2022 May 13;23(3). doi: 10.1093/bib/bbac051.

Abstract

Scoring functions are important components in molecular docking for structure-based drug discovery. Traditional scoring functions, generally empirical- or force field-based, are robust and have proven to be useful for identifying hits and lead optimizations. Although multiple highly accurate deep learning- or machine learning-based scoring functions have been developed, their direct applications for docking and screening are limited. We describe a novel strategy to develop a reliable protein-ligand scoring function by augmenting the traditional scoring function Vina score using a correction term (OnionNet-SFCT). The correction term is developed based on an AdaBoost random forest model, utilizing multiple layers of contacts formed between protein residues and ligand atoms. In addition to the Vina score, the model considerably enhances the AutoDock Vina prediction abilities for docking and screening tasks based on different benchmarks (such as cross-docking dataset, CASF-2016, DUD-E and DUD-AD). Furthermore, our model could be combined with multiple docking applications to increase pose selection accuracies and screening abilities, indicating its wide usage for structure-based drug discoveries. Furthermore, in a reverse practice, the combined scoring strategy successfully identified multiple known receptors of a plant hormone. To summarize, the results show that the combination of data-driven model (OnionNet-SFCT) and empirical scoring function (Vina score) is a good scoring strategy that could be useful for structure-based drug discoveries and potentially target fishing in future.

摘要

打分函数是基于结构的药物发现中分子对接的重要组成部分。传统的打分函数,通常基于经验或力场,具有稳健性,并已被证明在识别命中和先导优化方面非常有用。尽管已经开发了多种高度准确的基于深度学习或机器学习的打分函数,但它们直接应用于对接和筛选受到限制。我们描述了一种通过使用修正项(OnionNet-SFCT)来增强传统打分函数 Vina 得分的可靠的蛋白质-配体打分函数的新策略。修正项是基于 AdaBoost 随机森林模型开发的,利用蛋白质残基和配体原子之间形成的多层接触。除了 Vina 得分之外,该模型还大大提高了 AutoDock Vina 在不同基准测试(如交叉对接数据集、CASF-2016、DUD-E 和 DUD-AD)的对接和筛选任务中的预测能力。此外,我们的模型可以与多个对接应用程序结合使用,以提高构象选择的准确性和筛选能力,这表明其在基于结构的药物发现中有广泛的用途。此外,在反向实践中,联合打分策略成功地鉴定了植物激素的多个已知受体。总之,结果表明,数据驱动模型(OnionNet-SFCT)和经验打分函数(Vina 得分)的组合是一种很好的打分策略,可用于基于结构的药物发现,并可能在未来用于靶点搜索。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9ea6/9116214/0bc3e2f62f24/bbac051f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验