Suppr超能文献

机器学习预测最大摄氧量和峰值功率输出,用于使用非运动特征定制心肺运动测试。

Machine learning predicts peak oxygen uptake and peak power output for customizing cardiopulmonary exercise testing using non-exercise features.

机构信息

Institute for Sport and Sport Science, Performance and Health (Sports Medicine), TU Dortmund University, Dortmund, Germany.

Institute for Computer Science, Department of Artificial Intelligence, TU Dortmund University, Dortmund, Germany.

出版信息

Eur J Appl Physiol. 2024 Nov;124(11):3421-3431. doi: 10.1007/s00421-024-05543-x. Epub 2024 Jul 3.

Abstract

PURPOSE

Cardiopulmonary exercise testing (CPET) is considered the gold standard for assessing cardiorespiratory fitness. To ensure consistent performance of each test, it is necessary to adapt the power increase of the test protocol to the physical characteristics of each individual. This study aimed to use machine learning models to determine individualized ramp protocols based on non-exercise features. We hypothesized that machine learning models will predict peak oxygen uptake ( O) and peak power output (PPO) more accurately than conventional multiple linear regression (MLR).

METHODS

The cross-sectional study was conducted with 274 (♀168, ♂106) participants who performed CPET on a cycle ergometer. Machine learning models and multiple linear regression were used to predict O and PPO using non-exercise features. The accuracy of the models was compared using criteria such as root mean square error (RMSE). Shapley additive explanation (SHAP) was applied to determine the feature importance.

RESULTS

The most accurate machine learning model was the random forest (RMSE: 6.52 ml/kg/min [95% CI 5.21-8.17]) for O prediction and the gradient boosting regression (RMSE: 43watts [95% CI 35-52]) for PPO prediction. Compared to the MLR, the machine learning models reduced the RMSE by up to 28% and 22% for prediction of O and PPO, respectively. Furthermore, SHAP ranked body composition data such as skeletal muscle mass and extracellular water as the most impactful features.

CONCLUSION

Machine learning models predict O and PPO more accurately than MLR and can be used to individualize CPET protocols. Features that provide information about the participant's body composition contribute most to the improvement of these predictions.

TRIAL REGISTRATION NUMBER

DRKS00031401 (6 March 2023, retrospectively registered).

摘要

目的

心肺运动测试(CPET)被认为是评估心肺适应能力的金标准。为了确保每次测试的一致性,有必要根据每个人的身体特征来调整测试方案的功率增加。本研究旨在使用机器学习模型根据非运动特征来确定个性化的斜坡方案。我们假设机器学习模型将比传统的多元线性回归(MLR)更准确地预测峰值摄氧量( O)和峰值功率输出(PPO)。

方法

这项横断面研究共纳入 274 名(♀168,♂106)参与者,他们在功率自行车上进行了 CPET。使用机器学习模型和多元线性回归,根据非运动特征预测 O和 PPO。使用均方根误差(RMSE)等标准比较模型的准确性。应用 Shapley 加法解释(SHAP)来确定特征的重要性。

结果

对于 O预测,最准确的机器学习模型是随机森林(RMSE:6.52ml/kg/min[95%CI 5.21-8.17]),对于 PPO 预测,最准确的机器学习模型是梯度提升回归(RMSE:43watts[95%CI 35-52])。与 MLR 相比,机器学习模型将 O和 PPO 的 RMSE 分别降低了 28%和 22%。此外,SHAP 将体成分数据(如骨骼肌质量和细胞外液)等数据列为最具影响力的特征。

结论

机器学习模型比 MLR 更准确地预测 O和 PPO,可以用于个性化 CPET 方案。提供参与者身体成分信息的特征对提高这些预测的准确性贡献最大。

注册号

DRKS00031401(2023 年 3 月 6 日, retrospectively 注册)。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/35a1/11519113/dde00d3adb59/421_2024_5543_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验