Serse Francesco, Bjola Antoniu, Salvalaglio Matteo, Pelucchi Matteo
Department of Chemistry Materials and Chemical Engineering, Politecnico di Milano, Piazza Leonardo da Vinci 32, Milan 20133, Italy.
Thomas Young Centre and Department of Chemical Engineering, University College London, London WC1E 7JE, U.K.
J Chem Theory Comput. 2024 Jul 23;20(14):6253-6262. doi: 10.1021/acs.jctc.4c00383. Epub 2024 Jul 3.
This study introduces a methodology that combines accelerated molecular dynamics and mean force integration to investigate solvent effects on chemical reaction kinetics. The newly developed methodology is applied to the β-scission of butyl acrylate (BA) dimer in polar (water) and nonpolar (xylene and BA monomer) solvents. The results show that solvation in both polar and nonpolar environments reduces the free energy barrier of activation by ∼4 kcal/mol and decreases the pre-exponential factor 2-fold. Employing a hybrid quantum mechanics/molecular mechanics approach with explicit solvent modeling, we compute kinetic rate constants that better match experimental measurements compared to previous gas-phase calculations. This methodology presents promising potential for accurately predicting kinetic rate constants in liquid-phase polymerization and depolymerization processes.
本研究介绍了一种结合加速分子动力学和平均力积分来研究溶剂对化学反应动力学影响的方法。新开发的方法应用于丙烯酸丁酯(BA)二聚体在极性(水)和非极性(二甲苯和BA单体)溶剂中的β-断裂反应。结果表明,在极性和非极性环境中的溶剂化作用使活化自由能垒降低了约4千卡/摩尔,并使指前因子降低了2倍。采用具有显式溶剂模型的量子力学/分子力学混合方法,我们计算出的动力学速率常数比之前的气相计算结果更符合实验测量值。该方法在准确预测液相聚合和解聚过程中的动力学速率常数方面具有广阔的应用前景。