Suppr超能文献

将极化 Drude 力场与连续静电 Poisson-Boltzmann 隐溶剂化模型相结合。

Combining the polarizable Drude force field with a continuum electrostatic Poisson-Boltzmann implicit solvation model.

机构信息

Laboratoire d'Optique et Biosciences, CNRS, INSERM, Ecole Polytechnique, Palaiseau F-91128, France.

Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, 20 Penn Street, Baltimore, Maryland 21201.

出版信息

J Comput Chem. 2018 Aug 15;39(22):1707-1719. doi: 10.1002/jcc.25345. Epub 2018 May 8.

Abstract

In this work, we have combined the polarizable force field based on the classical Drude oscillator with a continuum Poisson-Boltzmann/solvent-accessible surface area (PB/SASA) model. In practice, the positions of the Drude particles experiencing the solvent reaction field arising from the fixed charges and induced polarization of the solute must be optimized in a self-consistent manner. Here, we parameterized the model to reproduce experimental solvation free energies of a set of small molecules. The model reproduces well-experimental solvation free energies of 70 molecules, yielding a root mean square difference of 0.8 kcal/mol versus 2.5 kcal/mol for the CHARMM36 additive force field. The polarization work associated with the solute transfer from the gas-phase to the polar solvent, a term neglected in the framework of additive force fields, was found to make a large contribution to the total solvation free energy, comparable to the polar solute-solvent solvation contribution. The Drude PB/SASA also reproduces well the electronic polarization from the explicit solvent simulations of a small protein, BPTI. Model validation was based on comparisons with the experimental relative binding free energies of 371 single alanine mutations. With the Drude PB/SASA model the root mean square deviation between the predicted and experimental relative binding free energies is 3.35 kcal/mol, lower than 5.11 kcal/mol computed with the CHARMM36 additive force field. Overall, the results indicate that the main limitation of the Drude PB/SASA model is the inability of the SASA term to accurately capture non-polar solvation effects. © 2018 Wiley Periodicals, Inc.

摘要

在这项工作中,我们将基于经典德鲁德振荡器的极化力场与连续的泊松-玻尔兹曼/溶剂可及表面积(PB/SASA)模型相结合。实际上,必须以自洽的方式优化经历溶剂反应场的德鲁德粒子的位置,该溶剂反应场由溶质的固定电荷和诱导极化产生。在这里,我们对模型进行了参数化,以重现一组小分子的实验溶剂化自由能。该模型很好地重现了 70 个分子的实验溶剂化自由能,与 CHARMM36 加和力场相比,均方根差为 0.8 kcal/mol 对 2.5 kcal/mol。溶质从气相转移到极性溶剂的极化功,这是加和力场框架中忽略的一项,被发现对总溶剂化自由能有很大贡献,与极性溶质-溶剂溶剂化贡献相当。德鲁德 PB/SASA 还很好地再现了小蛋白 BPTI 的显式溶剂模拟中的电子极化。模型验证是基于与 371 个单丙氨酸突变的实验相对结合自由能的比较。使用德鲁德 PB/SASA 模型,预测和实验相对结合自由能之间的均方根偏差为 3.35 kcal/mol,低于 CHARMM36 加和力场计算的 5.11 kcal/mol。总体而言,结果表明,德鲁德 PB/SASA 模型的主要限制是 SASA 项无法准确捕获非极性溶剂化效应。© 2018 威利父子公司

相似文献

1
Combining the polarizable Drude force field with a continuum electrostatic Poisson-Boltzmann implicit solvation model.
J Comput Chem. 2018 Aug 15;39(22):1707-1719. doi: 10.1002/jcc.25345. Epub 2018 May 8.
2
p Calculations with the Polarizable Drude Force Field and Poisson-Boltzmann Solvation Model.
J Chem Theory Comput. 2020 Jul 14;16(7):4655-4668. doi: 10.1021/acs.jctc.0c00111. Epub 2020 Jun 12.
4
A new set of atomic radii for accurate estimation of solvation free energy by Poisson-Boltzmann solvent model.
J Comput Chem. 2014 Nov 5;35(29):2132-9. doi: 10.1002/jcc.23728. Epub 2014 Sep 15.
7
Accuracy comparison of several common implicit solvent models and their implementations in the context of protein-ligand binding.
J Mol Graph Model. 2017 Mar;72:70-80. doi: 10.1016/j.jmgm.2016.12.011. Epub 2016 Dec 21.
8
Optimized parameters for continuum solvation calculations with carbohydrates.
J Phys Chem B. 2008 Apr 24;112(16):5238-49. doi: 10.1021/jp709725b. Epub 2008 Apr 3.
10
Continuum polarizable force field within the Poisson-Boltzmann framework.
J Phys Chem B. 2008 Jun 26;112(25):7675-88. doi: 10.1021/jp7110988. Epub 2008 May 29.

引用本文的文献

1
CHARMM at 45: Enhancements in Accessibility, Functionality, and Speed.
J Phys Chem B. 2024 Oct 17;128(41):9976-10042. doi: 10.1021/acs.jpcb.4c04100. Epub 2024 Sep 20.
2
A generalized Kirkwood implicit solvent for the polarizable AMOEBA protein model.
J Chem Phys. 2023 Aug 7;159(5). doi: 10.1063/5.0158914.
3
Recent Developments in Free Energy Calculations for Drug Discovery.
Front Mol Biosci. 2021 Aug 11;8:712085. doi: 10.3389/fmolb.2021.712085. eCollection 2021.
5
Implicit Solvents for the Polarizable Atomic Multipole AMOEBA Force Field.
J Chem Theory Comput. 2021 Apr 13;17(4):2323-2341. doi: 10.1021/acs.jctc.0c01286. Epub 2021 Mar 26.
6
p Calculations with the Polarizable Drude Force Field and Poisson-Boltzmann Solvation Model.
J Chem Theory Comput. 2020 Jul 14;16(7):4655-4668. doi: 10.1021/acs.jctc.0c00111. Epub 2020 Jun 12.
7
Further Optimization and Validation of the Classical Drude Polarizable Protein Force Field.
J Chem Theory Comput. 2020 May 12;16(5):3221-3239. doi: 10.1021/acs.jctc.0c00057. Epub 2020 Apr 27.
8
Structural Insights into Hearing Loss Genetics from Polarizable Protein Repacking.
Biophys J. 2019 Aug 6;117(3):602-612. doi: 10.1016/j.bpj.2019.06.030. Epub 2019 Jul 3.

本文引用的文献

1
Improvements to the APBS biomolecular solvation software suite.
Protein Sci. 2018 Jan;27(1):112-128. doi: 10.1002/pro.3280. Epub 2017 Oct 24.
2
Simple models for nonpolar solvation: Parameterization and testing.
J Comput Chem. 2017 Nov 5;38(29):2509-2519. doi: 10.1002/jcc.24910. Epub 2017 Aug 7.
3
Predicting Binding Free Energies: Frontiers and Benchmarks.
Annu Rev Biophys. 2017 May 22;46:531-558. doi: 10.1146/annurev-biophys-070816-033654. Epub 2017 Apr 7.
4
Accurate, robust, and reliable calculations of Poisson-Boltzmann binding energies.
J Comput Chem. 2017 May 15;38(13):941-948. doi: 10.1002/jcc.24757. Epub 2017 Feb 16.
5
Electrostatic component of binding energy: Interpreting predictions from poisson-boltzmann equation and modeling protocols.
J Comput Chem. 2016 Oct 30;37(28):2495-507. doi: 10.1002/jcc.24475. Epub 2016 Aug 21.
7
Optimized Radii for Poisson-Boltzmann Calculations with the AMBER Force Field.
J Chem Theory Comput. 2005 May;1(3):484-93. doi: 10.1021/ct049834o.
8
Polarizable Atomic Multipole Solutes in a Generalized Kirkwood Continuum.
J Chem Theory Comput. 2007 Nov;3(6):2083-97. doi: 10.1021/ct7001336.
10
The MM/PBSA and MM/GBSA methods to estimate ligand-binding affinities.
Expert Opin Drug Discov. 2015 May;10(5):449-61. doi: 10.1517/17460441.2015.1032936. Epub 2015 Apr 2.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验