Laboratoire d'Optique et Biosciences, CNRS, INSERM, Ecole Polytechnique, Palaiseau F-91128, France.
Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, 20 Penn Street, Baltimore, Maryland 21201.
J Comput Chem. 2018 Aug 15;39(22):1707-1719. doi: 10.1002/jcc.25345. Epub 2018 May 8.
In this work, we have combined the polarizable force field based on the classical Drude oscillator with a continuum Poisson-Boltzmann/solvent-accessible surface area (PB/SASA) model. In practice, the positions of the Drude particles experiencing the solvent reaction field arising from the fixed charges and induced polarization of the solute must be optimized in a self-consistent manner. Here, we parameterized the model to reproduce experimental solvation free energies of a set of small molecules. The model reproduces well-experimental solvation free energies of 70 molecules, yielding a root mean square difference of 0.8 kcal/mol versus 2.5 kcal/mol for the CHARMM36 additive force field. The polarization work associated with the solute transfer from the gas-phase to the polar solvent, a term neglected in the framework of additive force fields, was found to make a large contribution to the total solvation free energy, comparable to the polar solute-solvent solvation contribution. The Drude PB/SASA also reproduces well the electronic polarization from the explicit solvent simulations of a small protein, BPTI. Model validation was based on comparisons with the experimental relative binding free energies of 371 single alanine mutations. With the Drude PB/SASA model the root mean square deviation between the predicted and experimental relative binding free energies is 3.35 kcal/mol, lower than 5.11 kcal/mol computed with the CHARMM36 additive force field. Overall, the results indicate that the main limitation of the Drude PB/SASA model is the inability of the SASA term to accurately capture non-polar solvation effects. © 2018 Wiley Periodicals, Inc.
在这项工作中,我们将基于经典德鲁德振荡器的极化力场与连续的泊松-玻尔兹曼/溶剂可及表面积(PB/SASA)模型相结合。实际上,必须以自洽的方式优化经历溶剂反应场的德鲁德粒子的位置,该溶剂反应场由溶质的固定电荷和诱导极化产生。在这里,我们对模型进行了参数化,以重现一组小分子的实验溶剂化自由能。该模型很好地重现了 70 个分子的实验溶剂化自由能,与 CHARMM36 加和力场相比,均方根差为 0.8 kcal/mol 对 2.5 kcal/mol。溶质从气相转移到极性溶剂的极化功,这是加和力场框架中忽略的一项,被发现对总溶剂化自由能有很大贡献,与极性溶质-溶剂溶剂化贡献相当。德鲁德 PB/SASA 还很好地再现了小蛋白 BPTI 的显式溶剂模拟中的电子极化。模型验证是基于与 371 个单丙氨酸突变的实验相对结合自由能的比较。使用德鲁德 PB/SASA 模型,预测和实验相对结合自由能之间的均方根偏差为 3.35 kcal/mol,低于 CHARMM36 加和力场计算的 5.11 kcal/mol。总体而言,结果表明,德鲁德 PB/SASA 模型的主要限制是 SASA 项无法准确捕获非极性溶剂化效应。© 2018 威利父子公司