文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

基于可解释深度学习的结肠癌诊断。

Colon cancer diagnosis by means of explainable deep learning.

机构信息

Institute for Informatics and Telematics, National Research Council of Italy (CNR), Pisa, Italy.

Department of Information Engineering, University of Pisa, Pisa, Italy.

出版信息

Sci Rep. 2024 Jul 3;14(1):15334. doi: 10.1038/s41598-024-63659-8.


DOI:10.1038/s41598-024-63659-8
PMID:38961080
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11222371/
Abstract

Early detection of the adenocarcinoma cancer in colon tissue by means of explainable deep learning, by classifying histological images and providing visual explainability on model prediction. Considering that in recent years, deep learning techniques have emerged as powerful techniques in medical image analysis, offering unprecedented accuracy and efficiency, in this paper we propose a method to automatically detect the presence of cancerous cells in colon tissue images. Various deep learning architectures are considered, with the aim of considering the best one in terms of quantitative and qualitative results. As a matter of fact, we consider qualitative results by taking into account the so-called prediction explainability, by providing a way to highlight on the tissue images the areas that from the model point of view are related to the presence of colon cancer. The experimental analysis, performed on 10,000 colon issue images, showed the effectiveness of the proposed method by obtaining an accuracy equal to 0.99. The experimental analysis shows that the proposed method can be successfully exploited for colon cancer detection and localisation from tissue images.

摘要

通过可解释深度学习,对结肠组织中的腺癌进行早期检测,对组织图像进行分类,并对模型预测提供可视化解释。近年来,深度学习技术已经成为医学图像分析中的强大技术,提供了前所未有的准确性和效率。在本文中,我们提出了一种自动检测结肠组织图像中癌细胞存在的方法。考虑了各种深度学习架构,旨在从定量和定性结果方面考虑最佳架构。实际上,我们通过考虑所谓的预测可解释性来考虑定性结果,通过提供一种在组织图像上突出显示模型认为与结肠癌存在相关的区域的方法。在 10000 张结肠图像上进行的实验分析表明,该方法的有效性,其准确率达到 0.99。实验分析表明,该方法可成功用于从组织图像中检测和定位结肠癌。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f539/11222371/c747b7fe7cb0/41598_2024_63659_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f539/11222371/550b42bc3360/41598_2024_63659_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f539/11222371/cb10ded07107/41598_2024_63659_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f539/11222371/65d94aad4afb/41598_2024_63659_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f539/11222371/98ec550db35e/41598_2024_63659_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f539/11222371/393faada6be6/41598_2024_63659_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f539/11222371/c747b7fe7cb0/41598_2024_63659_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f539/11222371/550b42bc3360/41598_2024_63659_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f539/11222371/cb10ded07107/41598_2024_63659_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f539/11222371/65d94aad4afb/41598_2024_63659_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f539/11222371/98ec550db35e/41598_2024_63659_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f539/11222371/393faada6be6/41598_2024_63659_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f539/11222371/c747b7fe7cb0/41598_2024_63659_Fig6_HTML.jpg

相似文献

[1]
Colon cancer diagnosis by means of explainable deep learning.

Sci Rep. 2024-7-3

[2]
Deep-Hipo: Multi-scale receptive field deep learning for histopathological image analysis.

Methods. 2020-7-1

[3]
A novel deep learning-based algorithm combining histopathological features with tissue areas to predict colorectal cancer survival from whole-slide images.

J Transl Med. 2023-10-17

[4]
A comprehensive review of deep learning in colon cancer.

Comput Biol Med. 2020-11

[5]
Exploiting histopathological imaging for early detection of lung and colon cancer via ensemble deep learning model.

Sci Rep. 2024-9-3

[6]
DeepXplainer: An interpretable deep learning based approach for lung cancer detection using explainable artificial intelligence.

Comput Methods Programs Biomed. 2024-1

[7]
Deep learning approaches for breast cancer detection in histopathology images: A review.

Cancer Biomark. 2024

[8]
Development of an explainable artificial intelligence model for Asian vascular wound images.

Int Wound J. 2024-4

[9]
Explainability and controllability of patient-specific deep learning with attention-based augmentation for markerless image-guided radiotherapy.

Med Phys. 2023-1

[10]
18F-FDG PET/CT Image Deep Learning Predicts Colon Cancer Survival.

Contrast Media Mol Imaging. 2023

引用本文的文献

[1]
Hybrid Algorithms Based on Two Evolutionary Computations for Image Classification.

Biomimetics (Basel). 2025-8-19

[2]
Colorectal cancer detection with enhanced precision using a hybrid supervised and unsupervised learning approach.

Sci Rep. 2025-1-25

[3]
Integrating artificial intelligence with smartphone-based imaging for cancer detection in vivo.

Biosens Bioelectron. 2025-3-1

[4]
Applying Deep-Learning Algorithm Interpreting Kidney, Ureter, and Bladder (KUB) X-Rays to Detect Colon Cancer.

J Imaging Inform Med. 2025-6

[5]
Analysis of changes in nutritional compounds of dried yellow chili after different processing treatments.

Sci Rep. 2024-9-16

本文引用的文献

[1]
Polyp Segmentation Using a Hybrid Vision Transformer and a Hybrid Loss Function.

J Imaging Inform Med. 2024-4

[2]
Medical image data augmentation: techniques, comparisons and interpretations.

Artif Intell Rev. 2023-3-20

[3]
Evaluation of denoising techniques to remove speckle and Gaussian noise from dermoscopy images.

Comput Biol Med. 2023-1

[4]
Disease type detection in lung and colon cancer images using the complement approach of inefficient sets.

Comput Biol Med. 2021-10

[5]
Deep learning for colon cancer histopathological images analysis.

Comput Biol Med. 2021-9

[6]
.

Sensors (Basel). 2021-1-22

[7]
A comprehensive review of deep learning in colon cancer.

Comput Biol Med. 2020-11

[8]
Colorectal cancer statistics, 2020.

CA Cancer J Clin. 2020-3-5

[9]
Image quality assessment: from error visibility to structural similarity.

IEEE Trans Image Process. 2004-4

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索