文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

使用混合监督与无监督学习方法提高结直肠癌检测的精度

Colorectal cancer detection with enhanced precision using a hybrid supervised and unsupervised learning approach.

作者信息

Raju Akella S Narasimha, Venkatesh K, Gatla Ranjith Kumar, Konakalla Eswara Prasad, Eid Marwa M, Titova Nataliia, Ghoneim Sherif S M, Ghaly Ramy N R

机构信息

Department of Computer Science and Engineering (Data Science), Institute of Aeronautical Engineering, Dundigul, Hyderabad, Telangana, 500043, India.

Department of Networking and Communications, School of Computing, SRM Institute of Science and Technology, Kattankulathur, Chennai, Tamilnadu, 603203, India.

出版信息

Sci Rep. 2025 Jan 25;15(1):3180. doi: 10.1038/s41598-025-86590-y.


DOI:10.1038/s41598-025-86590-y
PMID:39863646
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11763007/
Abstract

The current work introduces the hybrid ensemble framework for the detection and segmentation of colorectal cancer. This framework will incorporate both supervised classification and unsupervised clustering methods to present more understandable and accurate diagnostic results. The method entails several steps with CNN models: ADa-22 and AD-22, transformer networks, and an SVM classifier, all inbuilt. The CVC ClinicDB dataset supports this process, containing 1650 colonoscopy images classified as polyps or non-polyps. The best performance in the ensembles was done by the AD-22 + Transformer + SVM model, with an AUC of 0.99, a training accuracy of 99.50%, and a testing accuracy of 99.00%. This group also saw a high accuracy of 97.50% for Polyps and 99.30% for Non-Polyps, together with a recall of 97.80% for Polyps and 98.90% for Non-Polyps, hence performing very well in identifying both cancerous and healthy regions. The framework proposed here uses K-means clustering in combination with the visualisation of bounding boxes, thereby improving segmentation and yielding a silhouette score of 0.73 with the best cluster configuration. It discusses how to combine feature interpretation challenges into medical imaging for accurate localization and precise segmentation of malignant regions. A good balance between performance and generalization shall be done by hyperparameter optimization-heavy learning rates; dropout rates and overfitting shall be suppressed effectively. The hybrid schema of this work treats the deficiencies of the previous approaches, such as incorporating CNN-based effective feature extraction, Transformer networks for developing attention mechanisms, and finally the fine decision boundary of the support vector machine. Further, we refine this process via unsupervised clustering for the purpose of enhancing the visualisation of such a procedure. Such a holistic framework, hence, further boosts classification and segmentation results by generating understandable outcomes for more rigorous benchmarking of detecting colorectal cancer and with higher reality towards clinical application feasibility.

摘要

当前的工作介绍了用于结直肠癌检测和分割的混合集成框架。该框架将结合监督分类和无监督聚类方法,以呈现更易于理解和准确的诊断结果。该方法包括使用卷积神经网络(CNN)模型的几个步骤:内置的ADa - 22和AD - 22、Transformer网络以及支持向量机(SVM)分类器。CVC ClinicDB数据集支持这一过程,该数据集包含1650张分类为息肉或非息肉的结肠镜检查图像。集成模型中的最佳性能由AD - 22 + Transformer + SVM模型实现,其曲线下面积(AUC)为0.99,训练准确率为99.50%,测试准确率为99.00%。该组对于息肉的准确率也高达97.50%,对于非息肉的准确率为99.30%,同时息肉的召回率为97.80%,非息肉的召回率为98.90%,因此在识别癌性和健康区域方面表现非常出色。这里提出的框架将K均值聚类与边界框可视化相结合,从而改善分割效果,并在最佳聚类配置下产生了0.73的轮廓系数。它讨论了如何将特征解释挑战融入医学成像中,以实现恶性区域的精确定位和精确分割。通过超参数优化——重学习率,可以在性能和泛化之间取得良好的平衡;应有效抑制辍学率和过拟合。这项工作的混合模式弥补了先前方法的不足,例如纳入基于CNN的有效特征提取、用于开发注意力机制的Transformer网络,以及最终支持向量机的精细决策边界。此外,我们通过无监督聚类来优化这个过程,以增强该过程的可视化。因此,这样一个整体框架通过生成易于理解的结果,进一步提高了分类和分割结果,以便对结直肠癌检测进行更严格的基准测试,并在临床应用可行性方面更接近实际情况。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4e8b/11763007/9fe3e6037f91/41598_2025_86590_Fig30_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4e8b/11763007/036f165cfb96/41598_2025_86590_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4e8b/11763007/1a80989f517e/41598_2025_86590_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4e8b/11763007/cea4e9603e64/41598_2025_86590_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4e8b/11763007/6bcc9d0a8136/41598_2025_86590_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4e8b/11763007/6d8e1159350d/41598_2025_86590_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4e8b/11763007/eae895105f89/41598_2025_86590_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4e8b/11763007/660abce7f060/41598_2025_86590_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4e8b/11763007/b917a74cf663/41598_2025_86590_Fig8_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4e8b/11763007/6682bfbc935c/41598_2025_86590_Fig9_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4e8b/11763007/9a9e5a68d3c0/41598_2025_86590_Fig10_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4e8b/11763007/6eae309ec5a7/41598_2025_86590_Fig11_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4e8b/11763007/dae0faa4bb0d/41598_2025_86590_Fig12_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4e8b/11763007/4054b264eb5d/41598_2025_86590_Fig13_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4e8b/11763007/1046804f359b/41598_2025_86590_Fig14_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4e8b/11763007/93272b752fa6/41598_2025_86590_Fig15_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4e8b/11763007/6a3abafbabdc/41598_2025_86590_Fig16_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4e8b/11763007/535f0598145c/41598_2025_86590_Fig17_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4e8b/11763007/085d13d3e4a2/41598_2025_86590_Fig18_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4e8b/11763007/e678920c1c64/41598_2025_86590_Fig19_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4e8b/11763007/b25b5f4a2dd1/41598_2025_86590_Fig20_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4e8b/11763007/115a418a0b71/41598_2025_86590_Fig21_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4e8b/11763007/3c28997a21dd/41598_2025_86590_Fig22_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4e8b/11763007/ef81a446b0be/41598_2025_86590_Fig23_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4e8b/11763007/3333939a8c3a/41598_2025_86590_Fig24_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4e8b/11763007/eec004886700/41598_2025_86590_Fig25_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4e8b/11763007/ec9da821add1/41598_2025_86590_Fig26_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4e8b/11763007/5c8586cf3273/41598_2025_86590_Fig27_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4e8b/11763007/4b4886d08806/41598_2025_86590_Fig28_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4e8b/11763007/6622a6ef5aa7/41598_2025_86590_Fig29_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4e8b/11763007/9fe3e6037f91/41598_2025_86590_Fig30_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4e8b/11763007/036f165cfb96/41598_2025_86590_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4e8b/11763007/1a80989f517e/41598_2025_86590_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4e8b/11763007/cea4e9603e64/41598_2025_86590_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4e8b/11763007/6bcc9d0a8136/41598_2025_86590_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4e8b/11763007/6d8e1159350d/41598_2025_86590_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4e8b/11763007/eae895105f89/41598_2025_86590_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4e8b/11763007/660abce7f060/41598_2025_86590_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4e8b/11763007/b917a74cf663/41598_2025_86590_Fig8_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4e8b/11763007/6682bfbc935c/41598_2025_86590_Fig9_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4e8b/11763007/9a9e5a68d3c0/41598_2025_86590_Fig10_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4e8b/11763007/6eae309ec5a7/41598_2025_86590_Fig11_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4e8b/11763007/dae0faa4bb0d/41598_2025_86590_Fig12_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4e8b/11763007/4054b264eb5d/41598_2025_86590_Fig13_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4e8b/11763007/1046804f359b/41598_2025_86590_Fig14_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4e8b/11763007/93272b752fa6/41598_2025_86590_Fig15_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4e8b/11763007/6a3abafbabdc/41598_2025_86590_Fig16_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4e8b/11763007/535f0598145c/41598_2025_86590_Fig17_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4e8b/11763007/085d13d3e4a2/41598_2025_86590_Fig18_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4e8b/11763007/e678920c1c64/41598_2025_86590_Fig19_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4e8b/11763007/b25b5f4a2dd1/41598_2025_86590_Fig20_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4e8b/11763007/115a418a0b71/41598_2025_86590_Fig21_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4e8b/11763007/3c28997a21dd/41598_2025_86590_Fig22_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4e8b/11763007/ef81a446b0be/41598_2025_86590_Fig23_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4e8b/11763007/3333939a8c3a/41598_2025_86590_Fig24_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4e8b/11763007/eec004886700/41598_2025_86590_Fig25_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4e8b/11763007/ec9da821add1/41598_2025_86590_Fig26_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4e8b/11763007/5c8586cf3273/41598_2025_86590_Fig27_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4e8b/11763007/4b4886d08806/41598_2025_86590_Fig28_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4e8b/11763007/6622a6ef5aa7/41598_2025_86590_Fig29_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4e8b/11763007/9fe3e6037f91/41598_2025_86590_Fig30_HTML.jpg

相似文献

[1]
Colorectal cancer detection with enhanced precision using a hybrid supervised and unsupervised learning approach.

Sci Rep. 2025-1-25

[2]
Molecular feature-based classification of retroperitoneal liposarcoma: a prospective cohort study.

Elife. 2025-5-23

[3]
Cauliflower leaf diseases: A computer vision dataset for smart agriculture.

Data Brief. 2025-4-28

[4]
Interventions for fertility preservation in women with cancer undergoing chemotherapy.

Cochrane Database Syst Rev. 2025-6-19

[5]
Integrating Gut Microbiome and Metabolomics with Magnetic Resonance Enterography to Advance Bowel Damage Prediction in Crohn's Disease.

J Inflamm Res. 2025-6-11

[6]
Aural toilet (ear cleaning) for chronic suppurative otitis media.

Cochrane Database Syst Rev. 2025-6-9

[7]
Assessing the comparative effects of interventions in COPD: a tutorial on network meta-analysis for clinicians.

Respir Res. 2024-12-21

[8]
Wood Waste Valorization and Classification Approaches: A systematic review.

Open Res Eur. 2025-5-6

[9]
Clustering plasma concentration-time curves: applications of unsupervised learning in pharmacogenomics.

J Biopharm Stat. 2025

[10]
Introducing the dataset for measuring centrality for sustainability-A case study of Pecinci municipality, Serbia.

Data Brief. 2025-5-27

引用本文的文献

[1]
Colorectal cancer unmasked: A synergistic AI framework for Hyper-granular image dissection, precision segmentation, and automated diagnosis.

BMC Med Imaging. 2025-7-15

本文引用的文献

[1]
Novel Artificial Intelligence Combining Convolutional Neural Network and Support Vector Machine to Predict Colorectal Cancer Prognosis and Mutational Signatures From Hematoxylin and Eosin Images.

Mod Pathol. 2024-10

[2]
Colon cancer diagnosis by means of explainable deep learning.

Sci Rep. 2024-7-3

[3]
Effectiveness of Colonoscopy Screening vs Sigmoidoscopy Screening in Colorectal Cancer.

JAMA Netw Open. 2024-2-5

[4]
Colorectal Cancer Screening - Approach, Evidence, and Future Directions.

NEJM Evid. 2022-1

[5]
Role of colonoscopy in colorectal cancer screening: Available evidence.

Best Pract Res Clin Gastroenterol. 2023-10

[6]
CoInNet: A Convolution-Involution Network With a Novel Statistical Attention for Automatic Polyp Segmentation.

IEEE Trans Med Imaging. 2023-12

[7]
Automated Diagnosis for Colon Cancer Diseases Using Stacking Transformer Models and Explainable Artificial Intelligence.

Diagnostics (Basel). 2023-9-13

[8]
EnsemDeepCADx: Empowering Colorectal Cancer Diagnosis with Mixed-Dataset Features and Ensemble Fusion CNNs on Evidence-Based CKHK-22 Dataset.

Bioengineering (Basel). 2023-6-19

[9]
Ensemble-based multi-tissue classification approach of colorectal cancer histology images using a novel hybrid deep learning framework.

Sci Rep. 2023-5-31

[10]
Transcriptome profiling of two contrasting pigeon pea () genotypes in response to waterlogging stress.

Front Genet. 2023-1-10

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索