文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

利用组织病理学成像技术,通过集成深度学习模型,实现肺癌和结肠癌的早期检测。

Exploiting histopathological imaging for early detection of lung and colon cancer via ensemble deep learning model.

机构信息

Department of Computer Science, College of Science and Humanities Dawadmi, Shaqra University, Shaqra, Saudi Arabia.

Department of Information Systems, College of Computer and Information Sciences, Princess Nourah Bint Abdulrahman University, P.O. Box 84428, 11671, Riyadh, Saudi Arabia.

出版信息

Sci Rep. 2024 Sep 3;14(1):20434. doi: 10.1038/s41598-024-71302-9.


DOI:10.1038/s41598-024-71302-9
PMID:39227664
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11372073/
Abstract

Cancer seems to have a vast number of deaths due to its heterogeneity, aggressiveness, and significant propensity for metastasis. The predominant categories of cancer that may affect males and females and occur worldwide are colon and lung cancer. A precise and on-time analysis of this cancer can increase the survival rate and improve the appropriate treatment characteristics. An efficient and effective method for the speedy and accurate recognition of tumours in the colon and lung areas is provided as an alternative to cancer recognition methods. Earlier diagnosis of the disease on the front drastically reduces the chance of death. Machine learning (ML) and deep learning (DL) approaches can accelerate this cancer diagnosis, facilitating researcher workers to study a vast majority of patients in a limited period and at a low cost. This research presents Histopathological Imaging for the Early Detection of Lung and Colon Cancer via Ensemble DL (HIELCC-EDL) model. The HIELCC-EDL technique utilizes histopathological images to identify lung and colon cancer (LCC). To achieve this, the HIELCC-EDL technique uses the Wiener filtering (WF) method for noise elimination. In addition, the HIELCC-EDL model uses the channel attention Residual Network (CA-ResNet50) model for learning complex feature patterns. Moreover, the hyperparameter selection of the CA-ResNet50 model is performed using the tuna swarm optimization (TSO) technique. Finally, the detection of LCC is achieved by using the ensemble of three classifiers such as extreme learning machine (ELM), competitive neural networks (CNNs), and long short-term memory (LSTM). To illustrate the promising performance of the HIELCC-EDL model, a complete set of experimentations was performed on a benchmark dataset. The experimental validation of the HIELCC-EDL model portrayed a superior accuracy value of 99.60% over recent approaches.

摘要

癌症由于其异质性、侵袭性和明显的转移倾向,似乎导致了大量死亡。可能影响男性和女性并在全球范围内发生的主要癌症类别是结肠癌和肺癌。对这种癌症进行准确和及时的分析可以提高存活率并改善适当的治疗特征。为了替代癌症识别方法,提供了一种在结肠和肺部区域快速准确识别肿瘤的高效方法。早期发现这种疾病可以大大降低死亡的几率。机器学习 (ML) 和深度学习 (DL) 方法可以加速癌症诊断,使研究人员能够在有限的时间内以较低的成本研究绝大多数患者。本研究提出了一种通过集成深度学习(HIELCC-EDL)模型进行肺和结肠癌早期检测的组织病理学成像(Histopathological Imaging for the Early Detection of Lung and Colon Cancer via Ensemble DL,HIELCC-EDL)。HIELCC-EDL 技术利用组织病理学图像来识别肺癌和结肠癌(LCC)。为此,HIELCC-EDL 技术使用 Wiener 滤波(WF)方法消除噪声。此外,HIELCC-EDL 模型使用通道注意力残差网络(CA-ResNet50)模型学习复杂的特征模式。此外,使用金枪鱼群优化(Tuna Swarm Optimization,TSO)技术选择 CA-ResNet50 模型的超参数。最后,通过使用三个分类器(极限学习机(ELM)、竞争神经网络(CNNs)和长短时记忆(LSTM))的集合来实现 LCC 的检测。为了说明 HIELCC-EDL 模型的有前途的性能,在基准数据集上进行了全面的实验。HIELCC-EDL 模型的实验验证在最近的方法中表现出 99.60%的出色准确率。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c56b/11372073/886bfcad9f26/41598_2024_71302_Fig17_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c56b/11372073/17030cad309f/41598_2024_71302_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c56b/11372073/b11874c1351a/41598_2024_71302_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c56b/11372073/60e7fefc649f/41598_2024_71302_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c56b/11372073/906284997bb0/41598_2024_71302_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c56b/11372073/0681cd58b07e/41598_2024_71302_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c56b/11372073/4c0c585c61c1/41598_2024_71302_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c56b/11372073/993ca128599a/41598_2024_71302_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c56b/11372073/89ff7951d7df/41598_2024_71302_Fig8_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c56b/11372073/4efdf57790b4/41598_2024_71302_Fig9_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c56b/11372073/6c2ef1a84bba/41598_2024_71302_Fig10_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c56b/11372073/7324835ef712/41598_2024_71302_Fig11_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c56b/11372073/4efd2e472d46/41598_2024_71302_Fig12_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c56b/11372073/58867239e75f/41598_2024_71302_Fig13_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c56b/11372073/53b0389de2de/41598_2024_71302_Fig14_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c56b/11372073/894bc43c7979/41598_2024_71302_Fig15_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c56b/11372073/a4c15e81d2a0/41598_2024_71302_Fig16_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c56b/11372073/886bfcad9f26/41598_2024_71302_Fig17_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c56b/11372073/17030cad309f/41598_2024_71302_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c56b/11372073/b11874c1351a/41598_2024_71302_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c56b/11372073/60e7fefc649f/41598_2024_71302_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c56b/11372073/906284997bb0/41598_2024_71302_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c56b/11372073/0681cd58b07e/41598_2024_71302_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c56b/11372073/4c0c585c61c1/41598_2024_71302_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c56b/11372073/993ca128599a/41598_2024_71302_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c56b/11372073/89ff7951d7df/41598_2024_71302_Fig8_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c56b/11372073/4efdf57790b4/41598_2024_71302_Fig9_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c56b/11372073/6c2ef1a84bba/41598_2024_71302_Fig10_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c56b/11372073/7324835ef712/41598_2024_71302_Fig11_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c56b/11372073/4efd2e472d46/41598_2024_71302_Fig12_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c56b/11372073/58867239e75f/41598_2024_71302_Fig13_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c56b/11372073/53b0389de2de/41598_2024_71302_Fig14_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c56b/11372073/894bc43c7979/41598_2024_71302_Fig15_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c56b/11372073/a4c15e81d2a0/41598_2024_71302_Fig16_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c56b/11372073/886bfcad9f26/41598_2024_71302_Fig17_HTML.jpg

相似文献

[1]
Exploiting histopathological imaging for early detection of lung and colon cancer via ensemble deep learning model.

Sci Rep. 2024-9-3

[2]
Towards laryngeal cancer diagnosis using Dandelion Optimizer Algorithm with ensemble learning on biomedical throat region images.

Sci Rep. 2024-8-24

[3]
DeepHistoNet: A robust deep-learning model for the classification of hepatocellular, lung, and colon carcinoma.

Microsc Res Tech. 2024-2

[4]
Al-Biruni Earth Radius Optimization with Transfer Learning Based Histopathological Image Analysis for Lung and Colon Cancer Detection.

Cancers (Basel). 2023-6-23

[5]
Deep learning ensemble approach with explainable AI for lung and colon cancer classification using advanced hyperparameter tuning.

BMC Med Inform Decis Mak. 2024-8-7

[6]
Dung Beetle Optimization with Deep Feature Fusion Model for Lung Cancer Detection and Classification.

Cancers (Basel). 2023-8-5

[7]
Lung and colon cancer classification using medical imaging: a feature engineering approach.

Phys Eng Sci Med. 2022-9

[8]
Augmented histopathology: Enhancing colon cancer detection through deep learning and ensemble techniques.

Microsc Res Tech. 2025-1

[9]
.

Sensors (Basel). 2021-1-22

[10]
MABAL: a Novel Deep-Learning Architecture for Machine-Assisted Bone Age Labeling.

J Digit Imaging. 2018-8

本文引用的文献

[1]
Deep learning-based morphological feature analysis and the prognostic association study in colon adenocarcinoma histopathological images.

Front Oncol. 2023-2-8

[2]
A Framework for Lung and Colon Cancer Diagnosis via Lightweight Deep Learning Models and Transformation Methods.

Diagnostics (Basel). 2022-11-23

[3]
Improving Performance of Breast Lesion Classification Using a ResNet50 Model Optimized with a Novel Attention Mechanism.

Tomography. 2022-9-28

[4]
Accurate recognition of colorectal cancer with semi-supervised deep learning on pathological images.

Nat Commun. 2021-11-2

[5]
Deep Convolutional Neural Networks for Chest Diseases Detection.

J Healthc Eng. 2018-8-1

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索