文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

Geometry-complete diffusion for 3D molecule generation and optimization.

作者信息

Morehead Alex, Cheng Jianlin

机构信息

Department of Electrical Engineering & Computer Science, NextGen Precision Health, University of Missouri, Columbia, MO, 65211, USA.

出版信息

Commun Chem. 2024 Jul 3;7(1):150. doi: 10.1038/s42004-024-01233-z.


DOI:10.1038/s42004-024-01233-z
PMID:38961141
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11222514/
Abstract

Generative deep learning methods have recently been proposed for generating 3D molecules using equivariant graph neural networks (GNNs) within a denoising diffusion framework. However, such methods are unable to learn important geometric properties of 3D molecules, as they adopt molecule-agnostic and non-geometric GNNs as their 3D graph denoising networks, which notably hinders their ability to generate valid large 3D molecules. In this work, we address these gaps by introducing the Geometry-Complete Diffusion Model (GCDM) for 3D molecule generation, which outperforms existing 3D molecular diffusion models by significant margins across conditional and unconditional settings for the QM9 dataset and the larger GEOM-Drugs dataset, respectively. Importantly, we demonstrate that GCDM's generative denoising process enables the model to generate a significant proportion of valid and energetically-stable large molecules at the scale of GEOM-Drugs, whereas previous methods fail to do so with the features they learn. Additionally, we show that extensions of GCDM can not only effectively design 3D molecules for specific protein pockets but can be repurposed to consistently optimize the geometry and chemical composition of existing 3D molecules for molecular stability and property specificity, demonstrating new versatility of molecular diffusion models. Code and data are freely available on GitHub .

摘要
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7c39/11222514/8e3c92367998/42004_2024_1233_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7c39/11222514/e5fdfcda7042/42004_2024_1233_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7c39/11222514/982e673d4a44/42004_2024_1233_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7c39/11222514/3363f164e877/42004_2024_1233_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7c39/11222514/89d41a191f40/42004_2024_1233_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7c39/11222514/8f4d1f1dbab0/42004_2024_1233_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7c39/11222514/68af68881299/42004_2024_1233_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7c39/11222514/8e3c92367998/42004_2024_1233_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7c39/11222514/e5fdfcda7042/42004_2024_1233_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7c39/11222514/982e673d4a44/42004_2024_1233_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7c39/11222514/3363f164e877/42004_2024_1233_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7c39/11222514/89d41a191f40/42004_2024_1233_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7c39/11222514/8f4d1f1dbab0/42004_2024_1233_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7c39/11222514/68af68881299/42004_2024_1233_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7c39/11222514/8e3c92367998/42004_2024_1233_Fig7_HTML.jpg

相似文献

[1]
Geometry-complete diffusion for 3D molecule generation and optimization.

Commun Chem. 2024-7-3

[2]
Geometry-Complete Diffusion for 3D Molecule Generation and Optimization.

ArXiv. 2024-5-24

[3]
Equivariant score-based generative diffusion framework for 3D molecules.

BMC Bioinformatics. 2024-5-30

[4]
Learning Joint 2-D and 3-D Graph Diffusion Models for Complete Molecule Generation.

IEEE Trans Neural Netw Learn Syst. 2024-9

[5]
An equivariant generative framework for molecular graph-structure Co-design.

Chem Sci. 2023-7-19

[6]
GEOM, energy-annotated molecular conformations for property prediction and molecular generation.

Sci Data. 2022-4-21

[7]
EC-Conf: A ultra-fast diffusion model for molecular conformation generation with equivariant consistency.

J Cheminform. 2024-9-3

[8]
PIDiff: Physics informed diffusion model for protein pocket-specific 3D molecular generation.

Comput Biol Med. 2024-9

[9]
Geometry-complete perceptron networks for 3D molecular graphs.

Bioinformatics. 2024-2-1

[10]
A dual diffusion model enables 3D molecule generation and lead optimization based on target pockets.

Nat Commun. 2024-3-26

引用本文的文献

[1]
Optimizing blood-brain barrier permeability in KRAS inhibitors: A structure-constrained molecular generation approach.

J Pharm Anal. 2025-8

[2]
Target-aware 3D molecular generation based on guided equivariant diffusion.

Nat Commun. 2025-8-25

[3]
Generative artificial intelligence based models optimization towards molecule design enhancement.

J Cheminform. 2025-8-4

[4]
Geometry-complete latent diffusion model for 3D molecule generation.

Bioinformatics. 2025-8-2

[5]
Unavailability of experimental 3D structural data on protein folding dynamics and necessity for a new generation of structure prediction methods in this context.

ArXiv. 2025-7-10

[6]
Artificial Intelligence in Molecular Optimization: Current Paradigms and Future Frontiers.

Int J Mol Sci. 2025-5-19

[7]
DiffMC-Gen: A Dual Denoising Diffusion Model for Multi-Conditional Molecular Generation.

Adv Sci (Weinh). 2025-6

[8]
DiffBP: generative diffusion of 3D molecules for target protein binding.

Chem Sci. 2024-12-4

[9]
AI-Based Computational Methods in Early Drug Discovery and Post Market Drug Assessment: A Survey.

IEEE Trans Comput Biol Bioinform. 2025

[10]
Response Matching for Generating Materials and Molecules.

J Chem Theory Comput. 2024-10-22

本文引用的文献

[1]
Diffusion models in bioinformatics and computational biology.

Nat Rev Bioeng. 2024-2

[2]
Generalized biomolecular modeling and design with RoseTTAFold All-Atom.

Science. 2024-4-19

[3]
PoseBusters: AI-based docking methods fail to generate physically valid poses or generalise to novel sequences.

Chem Sci. 2023-12-13

[4]
Protein structure accuracy estimation using geometry-complete perceptron networks.

Protein Sci. 2024-3

[5]
Geometry-complete perceptron networks for 3D molecular graphs.

Bioinformatics. 2024-2-1

[6]
De novo design of protein structure and function with RFdiffusion.

Nature. 2023-8

[7]
Fragment Merging Using a Graph Database Samples Different Catalogue Space than Similarity Search.

J Chem Inf Model. 2023-6-12

[8]
Generative Models as an Emerging Paradigm in the Chemical Sciences.

J Am Chem Soc. 2023-4-26

[9]
Evolutionary-scale prediction of atomic-level protein structure with a language model.

Science. 2023-3-17

[10]
GEOM, energy-annotated molecular conformations for property prediction and molecular generation.

Sci Data. 2022-4-21

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索