Sheng Xia, Gui Yike, Yu Jie, Wang Yitian, Li Zhenghao, Zhang Xiaoya, Xing Yuxin, Wang Yuqing, Li Zhaojun, Zheng Mingyue, Yang Liquan, Li Xutong
Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica Chinese Academy of Sciences, Shanghai, 201203, China.
University of Chinese Academy of Sciences, Beijing, 100049, China.
J Pharm Anal. 2025 Aug;15(8):101337. doi: 10.1016/j.jpha.2025.101337. Epub 2025 May 9.
Kirsten rat sarcoma viral oncogene homolog (KRAS) protein inhibitors are a promising class of therapeutics, but research on molecules that effectively penetrate the blood-brain barrier (BBB) remains limited, which is crucial for treating central nervous system (CNS) malignancies. Although molecular generation models have recently advanced drug discovery, they often overlook the complexity of biological and chemical factors, leaving room for improvement. In this study, we present a structure-constrained molecular generation workflow designed to optimize lead compounds for both drug efficacy and drug absorption properties. Our approach utilizes a variational autoencoder (VAE) generative model integrated with reinforcement learning for multi-objective optimization. This method specifically aims to enhance BBB permeability (BBBp) while maintaining high-affinity substructures of KRAS inhibitors. To support this, we incorporate a specialized KRAS BBB predictor based on active learning and an affinity predictor employing comparative learning models. Additionally, we introduce two novel metrics, the knowledge-integrated reproduction score (KIRS) and the composite diversity score (CDS), to assess structural performance and biological relevance. Retrospective validation with KRAS inhibitors, AMG510 and MRTX849, demonstrates the framework's effectiveness in optimizing BBBp and highlights its potential for real-world drug development applications. This study provides a robust framework for accelerating the structural enhancement of lead compounds, advancing the drug development process across diverse targets.
Kirsten 大鼠肉瘤病毒癌基因同源物(KRAS)蛋白抑制剂是一类很有前景的治疗药物,但对能够有效穿透血脑屏障(BBB)的分子的研究仍然有限,而这对于治疗中枢神经系统(CNS)恶性肿瘤至关重要。尽管分子生成模型最近推动了药物发现,但它们常常忽视生物和化学因素的复杂性,仍有改进空间。在本研究中,我们提出了一种结构受限的分子生成工作流程,旨在优化先导化合物的药物疗效和药物吸收特性。我们的方法利用变分自编码器(VAE)生成模型与强化学习相结合进行多目标优化。该方法特别旨在提高血脑屏障通透性(BBBp),同时保持KRAS抑制剂的高亲和力亚结构。为支持这一点,我们纳入了基于主动学习的专门KRAS血脑屏障预测器和采用比较学习模型的亲和力预测器。此外,我们引入了两个新指标,知识整合再现分数(KIRS)和复合多样性分数(CDS),以评估结构性能和生物学相关性。用KRAS抑制剂AMG510和MRTX849进行的回顾性验证证明了该框架在优化血脑屏障通透性方面的有效性,并突出了其在实际药物开发应用中的潜力。本研究为加速先导化合物的结构优化提供了一个强大的框架,推动了针对不同靶点的药物开发进程。