文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

基于引导等变扩散的目标感知三维分子生成

Target-aware 3D molecular generation based on guided equivariant diffusion.

作者信息

Hu Qiaoyu, Sun Changzhi, He Huan, Xu Jiazheng, Liu Danlin, Zhang Wenqing, Shi Sumeng, Zhang Kai, Li Honglin

机构信息

Innovation Center for AI and Drug Discovery, School of Pharmacy, East China Normal University, Shanghai, China.

Lingang Laboratory, Shanghai, China.

出版信息

Nat Commun. 2025 Aug 25;16(1):7928. doi: 10.1038/s41467-025-63245-0.


DOI:10.1038/s41467-025-63245-0
PMID:40854901
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC12379259/
Abstract

Recent molecular generation models for structure-based drug design (SBDD) often produce unrealistic 3D molecules due to the neglect of structural feasibility and drug-like properties. In this paper, we introduce DiffGui, a target-conditioned E(3)-equivariant diffusion model that integrates bond diffusion and property guidance, to address the above challenges. The combination of atom diffusion and bond diffusion guarantees the concurrent generation of both atoms and bonds by explicitly modeling their interdependencies. Property guidance incorporates the binding affinity and drug-like properties of molecules into the training and sampling processes. Extensive experiments prove that DiffGui outperforms existing methods in generating molecules with high binding affinity, rational chemical structure, and desirable properties. Ablation studies confirm the importance of bond diffusion and property guidance modules. DiffGui demonstrates effectiveness in both de novo drug design and lead optimization, with validation through wet-lab experiments.

摘要

最近用于基于结构的药物设计(SBDD)的分子生成模型,由于忽略了结构可行性和类药物性质,常常生成不切实际的三维分子。在本文中,我们引入了DiffGui,这是一种目标条件下的E(3)等变扩散模型,它整合了键扩散和性质引导,以应对上述挑战。原子扩散和键扩散的结合通过明确建模它们的相互依赖性,保证了原子和键的同时生成。性质引导将分子的结合亲和力和类药物性质纳入训练和采样过程。大量实验证明,DiffGui在生成具有高结合亲和力、合理化学结构和理想性质的分子方面优于现有方法。消融研究证实了键扩散和性质引导模块的重要性。DiffGui在从头药物设计和先导优化方面都证明了有效性,并通过湿实验室实验进行了验证。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c009/12379259/0a6861104269/41467_2025_63245_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c009/12379259/025fd89793d0/41467_2025_63245_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c009/12379259/24efec388185/41467_2025_63245_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c009/12379259/c235ea051516/41467_2025_63245_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c009/12379259/295afa2dec96/41467_2025_63245_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c009/12379259/35df4de92add/41467_2025_63245_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c009/12379259/a9691420e412/41467_2025_63245_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c009/12379259/0a6861104269/41467_2025_63245_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c009/12379259/025fd89793d0/41467_2025_63245_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c009/12379259/24efec388185/41467_2025_63245_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c009/12379259/c235ea051516/41467_2025_63245_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c009/12379259/295afa2dec96/41467_2025_63245_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c009/12379259/35df4de92add/41467_2025_63245_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c009/12379259/a9691420e412/41467_2025_63245_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c009/12379259/0a6861104269/41467_2025_63245_Fig7_HTML.jpg

相似文献

[1]
Target-aware 3D molecular generation based on guided equivariant diffusion.

Nat Commun. 2025-8-25

[2]
A 3D pocket-aware lead optimization model with knowledge guidance and its application for discovery of new glutaminyl cyclase inhibitors.

Brief Bioinform. 2025-7-2

[3]
Prescription of Controlled Substances: Benefits and Risks

2025-1

[4]
3D-EDiffMG: 3D equivariant diffusion-driven molecular generation to accelerate drug discovery.

J Pharm Anal. 2025-6

[5]
Diffusing on Two Levels and Optimizing for Multiple Properties: A Novel Approach to Generating Molecules With Desirable Properties.

IEEE/ACM Trans Comput Biol Bioinform. 2024

[6]
Electrophoresis

2025-1

[7]
Structure-aware diffusion model for molecule generation based on K-Nearest Neighbor and equivariant graph neural network.

Future Med Chem. 2025-9

[8]
An approach to produce thousands of single-chain antibody variants on a SPR biosensor chip for measuring target binding kinetics and for deep characterization of antibody paratopes.

bioRxiv. 2025-2-7

[9]
Stabilizing machine learning for reproducible and explainable results: A novel validation approach to subject-specific insights.

Comput Methods Programs Biomed. 2025-6-21

[10]
Enhancing Clinical Relevance of Pretrained Language Models Through Integration of External Knowledge: Case Study on Cardiovascular Diagnosis From Electronic Health Records.

JMIR AI. 2024-8-6

本文引用的文献

[1]
Structure-based drug design with equivariant diffusion models.

Nat Comput Sci. 2024-12

[2]
DiffPROTACs is a deep learning-based generator for proteolysis targeting chimeras.

Brief Bioinform. 2024-7-25

[3]
Geometry-complete diffusion for 3D molecule generation and optimization.

Commun Chem. 2024-7-3

[4]
Accurate structure prediction of biomolecular interactions with AlphaFold 3.

Nature. 2024-6

[5]
A dual diffusion model enables 3D molecule generation and lead optimization based on target pockets.

Nat Commun. 2024-3-26

[6]
PoseBusters: AI-based docking methods fail to generate physically valid poses or generalise to novel sequences.

Chem Sci. 2023-12-13

[7]
Computational approaches streamlining drug discovery.

Nature. 2023-4

[8]
Exploring the octanol-water partition coefficient dataset using deep learning techniques and data augmentation.

Commun Chem. 2021-6-14

[9]
Modeling the expansion of virtual screening libraries.

Nat Chem Biol. 2023-6

[10]
DeepPROTACs is a deep learning-based targeted degradation predictor for PROTACs.

Nat Commun. 2022-11-21

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索