Konkuk University School of Medicine, Chungju city, Republic of Korea.
Department of Ophthalmology, Konkuk University Medical Center, Seoul, Republic of Korea.
Eye (Lond). 2024 Aug;38(12):2365-2379. doi: 10.1038/s41433-024-03165-3. Epub 2024 Jul 3.
Optical coherence tomography (OCT) is a non-invasive imaging technology, which may be used to generate in vivo quantitative and qualitative measures of retinal structure. In terms of quantitative metrics, peripapillary retinal nerve fiber layer (pRNFL) thickness provides an indirect evaluation of axonal integrity within the optic nerve. Ganglion layer measures derived from macular scans indirectly reflect retinal ganglion cell status. Notably, ganglion layer indices are platform dependent and may include macular ganglion cell inner plexiform layer (mGCIPL), ganglion cell layer (GCL), and ganglion cell complex (GCC) analyses of thickness or volume. Interpreted together, pRNFL thickness and ganglion layer values can be used to diagnose optic neuropathies, monitor disease progression, and gauge response to therapeutic interventions for neuro-ophthalmic conditions. Qualitative assessments of the optic nerve head, using cross-sectional transverse axial, en face, and circular OCT imaging, may help distinguish papilledema from pseudopapilloedema, and identify outer retinal pathology. Innovations in OCT protocols and approaches including enhanced depth imaging (EDI), swept source (SS) techniques, and angiography (OCTA) may offer future insights regarding the potential pathogenesis of different optic neuropathies. Finally, recent developments in artificial intelligence (AI) utilizing OCT images may overcome longstanding challenges, which have plagued non-vision specialists who often struggle to perform reliable ophthalmoscopy. In this review, we aim to discuss the benefits and pitfalls of OCT, consider the practical applications of this technology in the assessment of optic neuropathies, and highlight scientific discoveries in the realm of optic nerve imaging that will ultimately change how neuro-ophthalmologists care for patients.
光学相干断层扫描(OCT)是一种非侵入性成像技术,可用于生成视网膜结构的体内定量和定性测量。在定量指标方面,视盘周围视网膜神经纤维层(pRNFL)厚度提供了视神经内轴突完整性的间接评估。从黄斑扫描中得出的神经节层测量值间接反映了视网膜神经节细胞的状态。值得注意的是,神经节层指数依赖于平台,并且可能包括黄斑神经节细胞内丛状层(mGCIPL)、神经节细胞层(GCL)和神经节细胞复合体(GCC)的厚度或体积分析。综合解读,pRNFL 厚度和神经节层值可用于诊断视神经病变、监测疾病进展,并评估神经眼科疾病的治疗干预反应。使用横截面横向轴向、共焦和环形 OCT 成像对视神经乳头进行定性评估,有助于区分视盘水肿和假性视盘水肿,并识别外层视网膜病变。OCT 协议和方法的创新,包括增强深度成像(EDI)、扫频源(SS)技术和血管造影(OCTA),可能为不同视神经病变的潜在发病机制提供未来的见解。最后,利用 OCT 图像的人工智能(AI)的最新发展可能克服长期存在的挑战,这些挑战困扰着非眼科专家,他们往往难以进行可靠的检眼镜检查。在这篇综述中,我们旨在讨论 OCT 的优势和缺陷,考虑该技术在评估视神经病变中的实际应用,并强调视神经成像领域的科学发现,这些发现最终将改变神经眼科医生照顾患者的方式。