一种具有特征特异性的预测误差模型解释了多巴胺能异质性。
A feature-specific prediction error model explains dopaminergic heterogeneity.
机构信息
Princeton Neuroscience Institute, Princeton, NJ, USA.
Department of Psychology, Princeton University, Princeton, NJ, USA.
出版信息
Nat Neurosci. 2024 Aug;27(8):1574-1586. doi: 10.1038/s41593-024-01689-1. Epub 2024 Jul 3.
The hypothesis that midbrain dopamine (DA) neurons broadcast a reward prediction error (RPE) is among the great successes of computational neuroscience. However, recent results contradict a core aspect of this theory: specifically that the neurons convey a scalar, homogeneous signal. While the predominant family of extensions to the RPE model replicates the classic model in multiple parallel circuits, we argue that these models are ill suited to explain reports of heterogeneity in task variable encoding across DA neurons. Instead, we introduce a complementary 'feature-specific RPE' model, positing that individual ventral tegmental area DA neurons report RPEs for different aspects of an animal's moment-to-moment situation. Further, we show how our framework can be extended to explain patterns of heterogeneity in action responses reported among substantia nigra pars compacta DA neurons. This theory reconciles new observations of DA heterogeneity with classic ideas about RPE coding while also providing a new perspective of how the brain performs reinforcement learning in high-dimensional environments.
中脑多巴胺(DA)神经元广播奖励预测误差(RPE)的假设是计算神经科学的重大成功之一。然而,最近的结果与该理论的一个核心方面相矛盾:具体来说,神经元传递的是标量、同质性信号。虽然 RPE 模型的主要扩展家族在多个并行电路中复制了经典模型,但我们认为这些模型不适合解释 DA 神经元在任务变量编码方面异质性的报告。相反,我们引入了一个互补的“特征特定 RPE”模型,假设单个腹侧被盖区 DA 神经元报告动物当前状态的不同方面的 RPE。此外,我们展示了如何扩展我们的框架来解释在黑质致密部 DA 神经元中报告的动作反应异质性模式。该理论将 DA 异质性的新观察结果与关于 RPE 编码的经典思想相协调,同时也为大脑在高维环境中进行强化学习提供了新的视角。