Suppr超能文献

一个深度学习框架,通过转录组学的填补来从组织病理学图像预测癌症治疗反应。

A deep-learning framework to predict cancer treatment response from histopathology images through imputed transcriptomics.

机构信息

Biological Data Science Institute, College of Science, Australian National University, Canberra, Australian Capital Territory, Australia.

Pangea Biomed Ltd., Tel Aviv, Israel.

出版信息

Nat Cancer. 2024 Sep;5(9):1305-1317. doi: 10.1038/s43018-024-00793-2. Epub 2024 Jul 3.

Abstract

Advances in artificial intelligence have paved the way for leveraging hematoxylin and eosin-stained tumor slides for precision oncology. We present ENLIGHT-DeepPT, an indirect two-step approach consisting of (1) DeepPT, a deep-learning framework that predicts genome-wide tumor mRNA expression from slides, and (2) ENLIGHT, which predicts response to targeted and immune therapies from the inferred expression values. We show that DeepPT successfully predicts transcriptomics in all 16 The Cancer Genome Atlas cohorts tested and generalizes well to two independent datasets. ENLIGHT-DeepPT successfully predicts true responders in five independent patient cohorts involving four different treatments spanning six cancer types, with an overall odds ratio of 2.28 and a 39.5% increased response rate among predicted responders versus the baseline rate. Notably, its prediction accuracy, obtained without any training on the treatment data, is comparable to that achieved by directly predicting the response from the images, which requires specific training on the treatment evaluation cohorts.

摘要

人工智能的进步为利用苏木精和伊红染色的肿瘤切片进行精准肿瘤学铺平了道路。我们提出了 ENLIGHT-DeepPT,这是一种间接的两步法,包括(1)DeepPT,这是一种从切片中预测全基因组肿瘤 mRNA 表达的深度学习框架,以及(2)ENLIGHT,它从推断的表达值预测靶向和免疫治疗的反应。我们表明,DeepPT 成功预测了所有 16 个测试的癌症基因组图谱队列中的转录组学,并且很好地推广到了两个独立的数据集。ENLIGHT-DeepPT 成功预测了五个独立的患者队列中的真实应答者,涉及四种不同的治疗方法,跨越六种癌症类型,整体优势比为 2.28,预测应答者的反应率比基线率增加了 39.5%。值得注意的是,它的预测准确性是在没有对治疗数据进行任何训练的情况下获得的,与直接从图像预测反应的方法相当,后者需要在治疗评估队列上进行特定的训练。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验