Suppr超能文献

基于活检图像的深度学习用于预测非小细胞肺癌患者新辅助化疗的病理反应。

Biopsy image-based deep learning for predicting pathologic response to neoadjuvant chemotherapy in patients with NSCLC.

作者信息

Zhang Yibo, Wang Shuaibo, Liu Xinying, Qu Yang, Yang Zijian, Su Yang, Hu Bin, Mao Yousheng, Lin Dongmei, Yang Lin, Zhou Meng

机构信息

Institute of Genomic Medicine, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, 325027, P. R. China.

Department of Thoracic Surgery, Beijing Institute of Respiratory Medicine and Beijing Chao-Yang Hospital, Capital Medical University, Beijing, 100020, P. R. China.

出版信息

NPJ Precis Oncol. 2025 May 7;9(1):132. doi: 10.1038/s41698-025-00927-4.

Abstract

Neoadjuvant chemotherapy (NAC) is a widely used therapeutic strategy for patients with resectable non-small cell lung cancer (NSCLC). However, individual responses to NAC vary widely among patients, limiting its effective clinical application. In this study, we propose a weakly supervised deep learning model, DeepDrRVT, which integrates self-supervised feature extraction and attention-based deep multiple instance learning, to improve NAC decision making from pretreatment biopsy images. DeepDrRVT demonstrated superior predictive performance and generalizability, achieving AUCs of 0.954, 0.872 and 0.848 for complete pathologic response, and 0.968, 0.893 and 0.831 for major pathologic response in the training, internal validation and external validation cohorts, respectively. The DeepDrRVT digital assessment of residual viable tumor correlated significantly with the local pathologists' visual assessment (Pearson r = 0.98, 0.80, and 0.59; digital/visual slope = 1.0, 0.8 and 0.55) and was also associated with longer disease-free survival (DFS) in all cohorts (HR = 0.455, 95% CI 0.234-0.887, P = 0.018; HR = 0.347, 95% CI 0.135-0.892, P = 0.021 and HR = 0.446, 95% CI 0.193-1.027, P = 0.051). Furthermore, DeepDrRVT remained an independent prognostic factor for DFS after adjustment for clinicopathologic variables (HR = 0.456, 95% CI 0.227-0.914, P = 0.027; HR = 0.358, 95% CI 0.135-0.949, P = 0.039 and HR = 0.419, 95% CI 0.181-0.974, P = 0.043). Thus, DeepDrRVT holds promise as an accessible and reliable tool for clinicians to make more informed treatment decisions prior to the initiation of NAC.

摘要

新辅助化疗(NAC)是一种广泛应用于可切除非小细胞肺癌(NSCLC)患者的治疗策略。然而,患者对NAC的个体反应差异很大,限制了其在临床中的有效应用。在本研究中,我们提出了一种弱监督深度学习模型DeepDrRVT,该模型整合了自监督特征提取和基于注意力的深度多实例学习,以改善基于治疗前活检图像的NAC决策。DeepDrRVT表现出卓越的预测性能和通用性,在训练、内部验证和外部验证队列中,其完全病理缓解的AUC分别为0.954、0.872和0.848,主要病理缓解的AUC分别为0.968、0.893和0.831。DeepDrRVT对残余存活肿瘤的数字评估与当地病理学家的视觉评估显著相关(Pearson相关系数r分别为0.98、0.80和0.59;数字评估/视觉评估斜率分别为1.0、0.8和0.55),并且在所有队列中也与更长的无病生存期(DFS)相关(HR = 0.455,95%CI 0.234 - 0.887,P = 0.018;HR = 0.347,95%CI 0.135 - 0.892,P = 0.021;HR = 0.446,95%CI 0.193 - 1.027,P = 0.051)。此外,在调整临床病理变量后,DeepDrRVT仍然是DFS的独立预后因素(HR = 0.456,95%CI 0.227 - 0.914,P = 0.027;HR = 0.358,95%CI 0.135 - 0.949,P = 0.039;HR = 0.419,95%CI 0.181 - 0.974,P = 0.043)。因此,DeepDrRVT有望成为一种方便且可靠的工具,帮助临床医生在开始NAC之前做出更明智的治疗决策。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c709/12059055/29e967519372/41698_2025_927_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验