Suppr超能文献

与蚊虫对拟除虫菊酯和有机磷抗性相关的关键基因模块和枢纽基因:系统生物学方法。

Key gene modules and hub genes associated with pyrethroid and organophosphate resistance in Anopheles mosquitoes: a systems biology approach.

机构信息

Department of Biochemistry, Jomo Kenyatta University of Agriculture and Technology, Nairobi, Kenya.

Kenya Medical Research Institute (KEMRI), Centre for Global Health Research (CGHR), Kisumu, Kenya.

出版信息

BMC Genomics. 2024 Jul 3;25(1):665. doi: 10.1186/s12864-024-10572-z.

Abstract

Indoor residual spraying (IRS) and insecticide-treated nets (ITNs) are the main methods used to control mosquito populations for malaria prevention. The efficacy of these strategies is threatened by the spread of insecticide resistance (IR), limiting the success of malaria control. Studies of the genetic evolution leading to insecticide resistance could enable the identification of molecular markers that can be used for IR surveillance and an improved understanding of the molecular mechanisms associated with IR. This study used a weighted gene co-expression network analysis (WGCNA) algorithm, a systems biology approach, to identify genes with similar co-expression patterns (modules) and hub genes that are potential molecular markers for insecticide resistance surveillance in Kenya and Benin. A total of 20 and 26 gene co-expression modules were identified via average linkage hierarchical clustering from Anopheles arabiensis and An. gambiae, respectively, and hub genes (highly connected genes) were identified within each module. Three specific genes stood out: serine protease, E3 ubiquitin-protein ligase, and cuticular proteins, which were top hub genes in both species and could serve as potential markers and targets for monitoring IR in these malaria vectors. In addition to the identified markers, we explored molecular mechanisms using enrichment maps that revealed a complex process involving multiple steps, from odorant binding and neuronal signaling to cellular responses, immune modulation, cellular metabolism, and gene regulation. Incorporation of these dynamics into the development of new insecticides and the tracking of insecticide resistance could improve the sustainable and cost-effective deployment of interventions.

摘要

室内滞留喷洒(IRS)和经杀虫剂处理的蚊帐(ITN)是控制蚊媒种群以预防疟疾的主要方法。这些策略的功效受到杀虫剂耐药性(IR)传播的威胁,限制了疟疾控制的成功。对导致杀虫剂耐药性的遗传进化的研究可以确定可用于 IR 监测的分子标记,并更好地了解与 IR 相关的分子机制。本研究使用加权基因共表达网络分析(WGCNA)算法,一种系统生物学方法,来鉴定具有相似共表达模式(模块)的基因和潜在的肯尼亚和贝宁杀虫剂耐药性监测的分子标记的枢纽基因。通过平均链接层次聚类,从阿拉伯按蚊和冈比亚按蚊中分别鉴定出 20 个和 26 个基因共表达模块,并在每个模块中鉴定出枢纽基因(高度连接的基因)。有三个特定的基因脱颖而出:丝氨酸蛋白酶、E3 泛素蛋白连接酶和角质蛋白,它们在两个物种中都是顶级枢纽基因,可作为监测这些疟疾传播媒介中 IR 的潜在标记物和靶标。除了鉴定出的标记物外,我们还使用富集图谱探索了分子机制,揭示了一个涉及多个步骤的复杂过程,从气味结合和神经元信号到细胞反应、免疫调节、细胞代谢和基因调控。将这些动态纳入新杀虫剂的开发和杀虫剂耐药性的追踪中,可以提高干预措施的可持续性和成本效益。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/788e/11223346/af7ab07be943/12864_2024_10572_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验